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MAGNETIC PROPERTIES OF ITINERANT EUECTRQN» 

I.    FERROMAGNETISM 

by 

A.  K.  Rajagopal and H.  Brook« 

Division of Engineering and Applied Physics 

Harvard University,  Cambridge,  Massachusetts 

and 

N.  R.  Ranganathan 

Matscience,  Institute of Mathematical Sciences, Madras~20,  India 

ABSTRACT 

We have here considered a gas of electrons with a positive background 

interacting among themselves through a bare Coulomb potential at T = 0oK. 

On examining th*« single-particle sUtes of the system,   one discovers that the 

bare Coulomb potential is screened by a dynamic dielectric constant.     The 

same screening is shown to appear also when the low-lying excitations of the 

spin-wave type involving particle-hole pairs are examined.    Now,   in the 

random phase approximation and in the static limit where the plasma effects 

are neglected and for long waves,   this screening is the usual Thomas-Fermi 

screening.    One may thus start with a Yukawa potential which contains an 

arbitrary screening.    This has not only the advantage of taking into account 

This work was done when N.R.Ranganathan was visiting Brandeis University 
during 1961-1963.  Chapter   III,   Cases (a) and (b) were formulated in 
collaboration with N.   R.   Ranganathan. 
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some correlations but also includes the extreme long-range and the extreme 

short-range Interactions as special cases.    The couplinj; strength is then 

defined as proportional to the ratio of the exchange to the kinetic enorfy. 

These considerations motivate the use of the Yukawa potential for the present 

problem. 

Wo compute the ground state energy of such a system in the Hartree- 

Fock approximation,  but excluding for the moment the possibility of spin 

density waves.    This energy is a function of coupling strength,  screening 

{   and relative magnetisation   J .    Examining the absolute minimum of this 

energy as a function of magnetization for various coupling strengths and 

screening constants we find some interesting features.    For   f <   0. 9 we 

find the ground state is either paramagnetic or ferromagnetic depending on 

the value of the coupling strength;    for   5 > 0. 9   the unsaturated ferromagnetic 

states also compete.    For   5 < 0. 9 the intermediate states are relative   maxima 

and,   hence,  do not appear.    The case where   § = 0   is the Coulomb problem 

and was studied earlier by Bloch in 1929.    For   | > 0. 9   and much larger 

tending to infinity,   one has the extreme short-range model of Stoner (1938). 

The results obtained by us go over into this case smoothly.    Thus,  a kind of 

phase diagram is obtained which describes the various ground states as the 

screening and the coupling strengths are varied.    It is interesting to point 

out that if the Thomas-Fermi value is used for the screening,   it is found 

that the gas stays paramagnetic for all densities. 

-x- 
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The spin wave excitation« in the ryetem are also considered within 

the.context of the random phase approximation ( RPA).    The equation   descvibing 

these is solved for long wavelengths of the «pin wave.    The existence of spin 

waves is clearly brought out by. computing the coefficient of   q     which is the 

first non-zero term in this expansion.    This.coefficient contains two terms with 

opposite signs.    By demanding that the spin-wave frequency be positive, oae 

may define the stability of the spin waves.    The condition for this coincides with 

that obtained for the ferromagnetic case by Herring both for the Coulomb and 

for the Stoner gases when appropriate limits are taken.    A consequence of this 

criterion is that if the ground state is a stable ferromagnetic state (i. e.,  stable 

with respect to individual particle excitations) then it is also stable with 
1 

respect to collective spin-wave excitations In the long wave  limit.    There 

exists a maximum wave vector for the spin wave beyond which it is onstabltf, 

being scattered Into Individual particle states. 

A matrix Green's function formalism is here developed to treat this 

problem.    This formalism Is a modification of Nambu's for superconductivity 

theory.     The method Is quite general and is here employed also to extend 

formally the results to electrons in periodic potential« (Bloch electrons). 

The same method is also used to derive the equations for the symmetry 

breaking solutions of the Overhauser spin density wave   type. 

In an epilogue, some objections to the use of Yukawa potentials are 

considered.    Also,the various aspects of extensions of the problem,   some 

c of which are only formally developed in the report, are outlined. 

-xi- 
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In another technical report we will discuss some of the que«tion:i 

concerning collective etatee in SDW Systeme and itinerant electron anti- 

ferroxnagnetism. 

-xii- 
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MAGNETIC PÄOPERTDES OF ITINERANT ELECTRONS 
■ 

I.   FERROMAGNETISM 

A.  K.  Rajagopal,  H.  Brooks, and N.  R.  Ranganathan 

I.   MOTIVATION AND STATEMENT OF THE PROBLEM 
1 

1.    General Introduction 

There are essentially two basic models of ferromagnetism in solids, 

and all others may be considered as variations on these two themes.     The 

Heisenberg [1] model is based on the assumption that: (1) the electrons are 

localized on atoms;  (2) only a single electron configuration corresponding to 

one electron per atom need be considered;   and (3) the interatomic exchange 

effects can be treated by introducing an interaction   - 2J..S, • S. between the 
ij—l   —J 

electrons localized on the sites i and j .    Here   J..  is an exchange integral, 

£r    and   S.   are the spin operators corresponding to the e'ectrons at the sites 

i   and   j .    This model is particularly suited to the case of insulators and will 

not be discussed here.    For a recent review of exchange in insulators,  one 

may refer to Anderson [2].    The itinerant model,  on the other hand,   developed 

by Bloch[3],  Stoner [4],  and Slater [5],  is based on the competition between 

the kinetic energy of the electrons in a band and electron   exchange in the 

Hartree-Fock approximation {hereafter referred to as HF).    This exchange may 

be thought of   as arising primarily from the intra-atomic rather than inter- 

atomic exchange.    There are two extreme models of exchange based on long- 

range Coulomb interactions between the electrons (which were considered by 

Bloch[3]) and on zero-range interaction.    The latter is shown here to be 

equivalent   to a Weiss field and such a model was   examined   by Stoner [4] 

■ 
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and Slater [!>] .    Varlou« modifications of the itinerant and the localised 

scheme« to fit «8^ real solids may be found in the review articles by Brooks 

[6a, b] and Vonsovskii and Izyumov [7] . 

It may be surmised that in an itinerant theory, the system may become 

ferromagnetic only for a certain ratio of the exchange energy to the kinetic 

energy.    This ratio may be thought of as a suitable strength parameter, which 

determines the magnetic behavior.    In the next two sections  a brief summary 

will be given of the results found In the literature on the ground-state properties 

and also the collective excitations of such systems. 

2.    Ground-State Properties 

In order to describe the ground-state properties,  the total energy of 

the system must be computed and its absolute minimum as a function of 

relative magnetization,    ? ,  must be examined.    This cannot be done exactly. 

The results to be described are within the HF approximation.    This consists 

in assuming that the system behaves as if it were composed of "quasi" 

particles which are effectively free despite interaction.    Also,this approximation 

takes into account only the parallel spin correlations between the electrons. 

Neglect of antiparallel spin correlations tends to exaggerate the tendency 
v 

towards ferromagnetism;  that is,   it overestimates the difference in inter- 

action energy between parallel and antiparallel spins of the electrons.    This 

difference tends to be minimized when the interactions are short range,  and 

therefore,  antiparallel spin correlations can,  to some extent,  be taken into 

account phenomenologically by introducing a short-range interaction between 
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quaiM particles.    Most of the calculations on the ferromagnetism of an electron 

is disregard such correlations.    It is only recently that the interactions have been 

taken into account more fully for the ordinary (nonmagnetic ) electron gas.    A 

description of the ground-state properties in HF and some recent attempts to 

take account of correlations will be given in the next two sub-sections.    It will 

be assumed that the system of electrons has a positive background ao as to 

keep the entire system electrically neutral.    All the calculations pertain to 

T = 0OK ,  although ti.     ormalism will be such that this restriction is not 

necessary. 

A.    Coulomb Interaction 

Bloch [3] was the first to compute the total energy of an electron gas 

in a positive background at T = 0oK   in the HF approximation,  as a function of 

the relative magnetization,   f .    The coupling strength for this problem is    r 

which is the effective radius of the electron in units of the Bohr radius and is 

inversely proportional to the cube root of the density of the system.     He 

showed that   for low densities,corresponding to   r     >    5. 45, the gas becomes 

ferromagnetic.    This follows when the energy of the ferromagnetic state 

{ ? = 1 )   is compared with that of the paramagnetic state ( ? - 0 ) .    A similar 

calculation was made by several other authors,  notably Brillouin [8], 

Wohlfarth [9],   Lidiard[10],  Shimuzu[ll],  and,   very lecently, Fukuda [12] . 

All obtained the same result as Bloch.    Shimuzu tried to take into account 

the electron correlations by including the plasma effects,  but his analysis 

was inconclusive.    Cooper [13] extended the Gell-mann and Brueckner [14] 
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&a*ly«l. for the ordinary   (nonmagnetic) electron ga. to the present problem. 

He concluded that taking Into account more interaction, give, ferromagnetic« 

for   rM >   4. 85.    Hi. method con.Ur.ed in taking into account a certain infinite 

.et of ring diagram..    Tha concluaion    i. that the electron ga. with Coulomb 

interaction. In HF become, ferromagnetic at low den.itie. and paramagnetic 

at high deneitle..    None of the author, quoted above wem. to have con.idered 

carefully the po.sibility of intermediate polarisation« a. ground .Ute«. 

B.    Short-Range Interaction 

Stoner [4j and Slater [5] modified the Sommerfeld model of the metal 

by populating a phenomenological internal magnetic field in order to describe 

the ferromagnetic interaction.    The coupling .trength in thi. case i. the ratio 

of the internal magnetic field energy,    KÖ«,  to the Fermi energy,  er,   KÖ'/c    . 

They a.sumed that the internal Weiss field acting on each electron i. the .ame, 

so that the up and down spin bands are displaced rigidly.    Slater [5],   however, 

took into account the actual density of states distribution instead of the free 

electron one.    The second assumption in this theory is that the electron. In 

their separate bands obey Fermi-Dirac (FD) statistics.    Such a system wa. 

shown to have a paramagnetic (P) ground state for   Kö'/cj,  <   2/3 ,  an 

unsaturated ferromagnetic state (UF,   0  <   ?  <   1) for 2/3  <    Kö'/e     < 2"1/3 

and a ferromagnetic state (F) for   Kfl'/cp    > Z'1^ .    Wohlfarth [15] ha. 

recently reviewed the present status of this model. 

The outstanding assumptions,   the existence of a Weiss field and the 

use of FD statistics,  remained to be justified in this theory.    The first wa. 
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attempted by Wohlfarth [9] and Lidiard [10] and the second by B«ll [U] . 

Wohifarth [9] and Lidiard [10] showed that the assumption of Stcner that UM 

exchange energy is proportional to the square of the relative magnetization is 

not strictly true.    More generally,  it is given by a power series in ( ;    the 

coefficients of this series involve certain overlap integrals.    Earlier,Brooks 

[6b] had examined in detail the ground-state properties for such a generalised 

Weiss field.    Bell [16] explicitly examined the statistics of the Weiss field 

and showed by a direct calculation of the partition function that the use of FD 

distribution« for the up and down bands can be made consistent.    This Is 

achieved by summing,  for each magnetic quantum number   m ,  over the sets 

of occupation numbers which are consistent with that value of  m .    Recently, 

Suris [17] reformulated the Stoner problem using a Green's function method. 

He found that Stoner's model is equivalent to an electron gas interacting 

through a zero-range potential in the HF approximation.    The FD distributions 

for the up and down spins follow as a natural consequence as does also the 

Weiss form of the exchange energy.    Suris then reproduced the results derived 

by Stoner although his method of solution of the resulting integral equations 

was more analytical than was the case with Stoner's work.    Thus^  this model 

is shown to exhibit an   F   state for high densities,  a   P   state for low densities 

and for the intermediate densities,   UF   states,   in contrast to the behavior of 

the Coulomb gas. 

All the above remarks concern the symmetry-preserving solutions of 

the HF equations.    Recently,   Overhauser [18] showed that there exist symmetry- 

breaking solutions of the HF equations which have lower energy than the usual 

solutions.     In particular, he showed that in a Coulomb gas,   the   P   state is 
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never the ground «täte.    It is always unstable towards the formation of static 

spin-density, wave (SDW) states.    This has been confirmed by Fukuda [12] . 

In an electron gas with xero-range interaction,  according to Overhauser,  the 

SDW states do not occur as ground states at all, for any coupling strength or 

density.    But Fukuda finds that these states are more stable than the   P   state 

for coupling strengths for which the UP is known to be stable. 

3.    Individual Particle and Collective Excitations 

The low-lying excitations in a medium close to the ground state are 

equally important in the study of any system.    In the Heisenberg model of a 

ferromagnet,  besides the spin-aligned state constituting the ground state, 

there exist spin-wave states close to the ground state.    The existence of spin 

waves in both ferromagnetic metals and insulators has been established 

experimentally [6a] .    Originally,the existence of spin waves was proved 

theoretically by Bloch[19] only for the Heisenberg model.    For quite some 

time    the absence of spin waves on an itinerant model was thought to be a 

serious drawback of the itinerant theory.    Slater [20],  however,   demonstrated 

that taking into account interactions more fully would produce spin waves 

on such a model.     This view was later amplified by Herring and Kittel [21] 

and by Herring [22, 23] .    The first paper gave largely phenomenological 

arguments and a more rigorous development appeared in the subsequent 

papers.    In an insulator one may describe the spin waves as follow».    In the 
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ground state,  the spins are all localized on the lattice sites of the insulator and 

are all lined up.    The first excited state is such that one of the spins on one of 

the lattice sites is reversed and since the system has translational symmetry 

this propagates as a spin reversal mode.    Herring and Kittel [21] gave arguments 

' * to show that, despite the fact that the electrons are wandering throughout the 

metal lattice,  their spin motions are correlated because of the exclusion 

principle.    They showed that an electron moving in a ferromagnetic metal is 
I 

continually gyrated because the electrons in its immediate vicinity tend to 
. 

align the spin of this electron with their average spin moment.    So they postulate 

a phenomenological expression for the energy due to this torque involving a 

" Bloch wall coefficient" which is shown to be related to the spin-wave energy 

in the lowest order of perturbation theory.    Herring [22, 23] treated this model 

in detail both for the Coulomb gas and for the short-range model.    The approach 

was to treat the ferromagnetic material as a continuous medium in which the 

three components of spin density are regarded as the amplitudes of a vector 

field quantized in the way demanded by the known commutation rules for the 

spin component».    They showed that there exist low-lying spin-wave states and 

that these are orthogonal to all the low-lying individual particle states of the 

usual itinerant electron model.    This same picture is employed by all the 

subsequent authors including the present ones. 

4 
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A.    Coulomb Ga> 

Herring [22] computed the spin-wcve frequency in the long wavelength 

limit for the ferromagnetic state,  using the model proposed earlier [21] .    For 

the Coulomb gas he found that the coefficient of  q     (where   q  is the magnitude 

of the wave vector of the spin wave) consists of two terms.    By demanding that 

the spin-wave frequency be positive,  he derived a stability condition which 

showed that stable spin waves exist for   r   > 5. 485.    This is slightly larger 

than the value derived by  Bloch [3] using the ground-state criterion (r   > 5.45). 

Recently,  Fukuda [12] rederived this result using an equation of motion 

technique in the random phase approximation (RPA) including exchange,  also 

in the limit of small   q .    He obtained a value of   r   >  5. 145.    However,  he 

made a numerical error in computing this value.    The correct stability 

criterion is    r    > 5. 344.     This result seems more plausible than Herring's, 

since it  implies that when   r      is largeenough to make the ferromagnetic 

state stable with respect to individual particle excitations (essentially the 

Bloch criterion),   then the criterion for spin-wave stability is automatically 

satisfied.    In other words,   the Bloch criterion is stronger than the spin-wave 

criterion,  and as we shall see, this    result also applies in the case of the general 

Yukawa interaction. 
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B.    Short-Range Ga» 

Herring [23] also computed the spin-wave energy in the long wave limit 

for the ferromagnetic state using the short-range model.    He computed the 

coefficient of  q     as in the Coulomb case and found that the spin-wave stability 

condition is   Kö'AF > 25'i/5 ■ 0. 635.    The required coupling is smaller than 

that required for stability of the complete   F   state   {Kd'/fj« > 0- 794) or for 

that matter,  the criterion for the UF state {K6'/e- > 0. 667).    The same result 

is also derived by Fukuda [12].    This implies that the spin waves are stable 

whenever either UF or F state is a stable ground state.    Besides finding the 

spin waves,  Herring and Kittel [21] had given arguments to show that there 

are other excited states which are of the Stoner type particle-hole pair 

scattering states.    These were shown to be orthogonal to the spin-wave states. 

Hereafter,  we shall refer to the spin-wave states as "bound states" since they 

are states of lower total spin polarization than the ground state but lying lower 

in energy than the lowest excited individual particle states corresponding to 

the transfer of one electron of one spin distribution to the other.    Thompson 

[24] has recently proposed an extension of the usual determinantal method for 

treating the ferromagnetic metal.    His work is very close in spirit to that 

of Herring.    He considered only the short-range interaction model.    His 

calculation is more general than Herring's in that he computed the spin-wave 

dispersion law for the   F   state for arbitrary   q .    Besides rederiving 

Herring's expression for the coefficient of   q    ,  he showed that the spin 

waves become degenerate with the single particle excitations of the Stoner 
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type above a certain  qmikx .    Thlo is shown achematically in Fig.   la.    ThU 

degeneracy actually results in the breaking up of the bound state Into the 

scattering states.    The spin wave decays by carrying an up spin electron into 

a spin down state, and energy and momentum must be conserved in this 

process.    The difference in energy of the up and down electrons is finite as 

shown in Fig.   la,  and the momenU must be such that the up electron must be 

inside the up Fermi sphere while the down electron must be outside the down 

Fermi sphere.    With these restrictions, for amall   q , this process is 

energetically Impossible while for a rertaln   q and beyond It Is Indeed max ' 
possible.    This process can take place for all suitable momenta of the 

electrons satisfying these conditions and, hence, one gets a continuum of 

scattering states as shown In the figures.    The bounding curves are for the 

electrons near the Fermi sphere.    If the calculation Is followed carefully, it 

Is seen that a lifetime   appears for the bound state as soon as it reaches the 

continuum of scattering states.    The interesting feature is that for   ? < 1 ,  the 

gap at   q = 0 ,   2KÖ • ?,  decreases and so for the UF states the   q is 
^max 

bound to be smaller than that for the   F   state and finally for   f = 0 ,   the   P 

state,  there are no bound spin-wave states.    This picture is essentially the 

same for the Coulomb case also. 

Edwards [25] tried to extend and generalize Herring's work for Bloch 

states but did not report any explicit calculations.    He derived an improved 

version of the general expressions for the spin-wave dispersion in the long 

wavelength limit using diagrammatic techniques for the evaluation of matrix 

elements.    He also indicated how the coefficients of higher powers in   q 

\ 
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FIC.ia:   DISPOSITION   OF SCATTERING  STATES AND THE COLLfCTIVK 

MOO«    IN ^K     CSCHEMATIC) 

FIG.lb:   DISPOSITION OF SCATTERING STATES AND THE  COLLECTIVE 

MODE INTTQ (SCHEMATIC) 
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could be calculated.    Kubo, et al. [26] ,  u«ing a Green«, function technique, 

treated the «hort-range itinerant electron model in RPA Including exchange. 

These author« were interested in computing the spin-wave contribution to the 

neutron scattering for an itinerant electron ferromagnetic system.    Such a 

model was shown to be capable of accounting for the observed diffuse scattering. 

In this calculation it is necessary to compute the dynamical susceptibilities. 

The spin-wave dispersion so derived agrees with Thompson's [24j .  Eaym [271, 

using a Boltzmann equation technique,  derived the same results for the same 

model.    He also gave arguments like Thompson's for the spin-wave states 

strongly mixing with the individual particle states above a certain wave vector. 

It is also of interest that, using the Landau theory of Fermi liquids as a model 

for the electrons in a metal,  Abrikosov,  et al.  [28] ,  showed the possibility of 

spin waves In a ferromagnetic metal.    Antonoff [29l,u8ing an equation of 

motion method3also attempted this problem;    he employed what he called a 

"degenerate kernel approximation," besides RPA, and obtained spin waves.    He 

also computed the maximum wave vector   qma     as was done by Thompson 

and Baym.    Fukuda [12] has examined the problem of spin waves based on the 

Stoner model but he only computed the spin-wave frequency in the long wave- 

length limit and in the ferromagnetic state like all others.    Thus several 

authors have computed the spin-wave frequency in the long wavelength limit 

and for the   F   state for the Stoner model.    It must be added that Kubo,  et al., 

and Baym (loc.   cit. ) found zero sound   type collective oscillations to exist, 

also.    These results are summarized in Table 1. 
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TABLE 1 : Individiial Particle'ahd^Collective Excitation« 

{Stoner Ca.») 

Type of Disturbance 

density-density 
long,     spin' susc. 
trans,  spin susc. 

Collective 
~K?o3e~~ 

Scattering 
States 

^ (zero C w=E  (k+q)- 
J sound)        ((r/U) 

w^q
2   («Pi« 

Er(k) 

u=E  (k-l-q)-E  (k)}no resonant »} 

P State 

(aero 
sound) 

response wav«) 

Er<k)=k2/2m-?Nr    (Nr = kJ.r/6 ff2) 

k
Fr = radius of <r-Fermi sphere,  v :    interaction potential. 

The density-density response function, longitudinal,and transverse spin 

susceptibilities may be thought of as describing, respectively, the spin singlet 

and the spin triplet with projections    0      and    1     of the particle-hole pairs. 

The scattering states for the density response function and the longitudinal 

spin susceptibility are of the form shown in the schematic sketch,   Fig.   lb. 

Here the zero-sound mode is seen to be quite close to the scattering states.' 

The plasma state is shown in this same figure}anticipating the future 

discussion of the Coulomb gas.     The absence of an energy gap in the excitation 

spectra must be noted. 

It is ftiteresting to compare the corresponding results for the   P   state 

when the interaction is taken to be of zero range.    Here only zero sound 

appears in the density response while no resonant responses appear in the 

susceptibilities as might be expected.    In this limit the results are well known. 
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(Zero sound:   Gottfried and Pieman {30] and spin susceptibility:   Wolff [31] ). 

The corresponding calculations for the Coulomb gas are not found in the 

literature. 

t 
4.    Present Work 

From the brief summary of the previous work in the last two sections, 

it is clear that the itinerant electron model of fcrromagnetism has recently 

seen a revival of interest.    The conclusions of Bloch [3] and subsequent 

authors on the Coulomb gas were slightly obscured because the absolute 

minimum of the ground state was not carefully examined.    For the   P   state, 

much work on the many-body aspects has been accomplished using modern 

field-theory techniques.    For a recent review of this one may refer to the 

books of Pines [32, 33] and Anderson [34].    Shimuzu [11] used the Bohm-Pines 

method to examine the many-body effects on the criterion for ferromagnetism. 

His results were inconclusive because he did not examine the total energy as 

a function of magnetization.    Except for the work of Cooper [13] ,   the 

extension of field theoretic methods to the ferromagnetic problem has not been 

carried out and even this work is not without objections.    One of the main 

objections to Cooper's work,  as he himself realizes,   is that the ring diagrams 

that were summed are valid only for high density   (r    < 1) and the second major 

objection is that he only compared as Bloch did,   the   F   and   P   energies. 

It has often been suggested in the literature,  notably by Lidiard [10] 

and Wohlfarth [35] ,   that some account of correlations can be included by 

using a Yukawa potential for the interaction.    This contains a screening 

/ 
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parameter and,  hence,  includes both the extreme long-range Coulomb case ' 

and the extreme short-range Stoner case as limits.    The suggestion actually 

came from Landsberg [36] who tried to explain the soft x „ay emission bands 

of sodium on a Sommerfeld model of the metal.    Very recently,  Robinson «t. al. f 

[37],  considered the justification, within   the context of RPA, of the use of 

such a Yukawa potential   for nonmagnetic problems.    The screening can be 

shown to come about when particle interactions are taken into account.    Pines 

[38] had earlier shown that taking into account the electron-electron inter- 

action brings about a screened interaction between electrons, of range   k  "* 

(in his notation).    He showed,  even though this has a very different structure, 

that it resembles the Yukawa potential quite closely up to distances comparable 

to or less than   kc All these arguments pertain to the nonmagnetic    case. 

Whatever be the consideration for the use of Yukawa potential in an inter- 

acting system,   it seems fruitful to  re-examine the problem afresh as the 

behavior of the Coulomb and the Stoner gases are completely different.    The 

Yukawa potential may give an insight into the effect of range on the criterion 

of ferromagnetism. 

The use of the Yukawa potential may be justified for the magnetic 

problem in much the same way as was done by Robinson,   et al.  [37] .    If 

in an interacting electron gas,   the behavior of a single electron is examined 

it is seen that even though one starts with a bare Coulomb interaction the 

exchange is screened in general by the dynamic dielectric constant.     In the 

RPA,  and if plasma effects are neglected by assuming the dielectric constant 

to be static,  and working in the long wavelength limit,   it is found that the § 

i 

u 
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interaction potential ha. now the appearance of a Yukawa potential with the 

•creening parameter given by the familiar    Thoma.-Fermi .creening.    Thi. 

eame .creening can be .hown to appear when the coUective excitation, of the 

.pin-wave type are examined.    In th*. way, the u.e of the Yukawa potential 

4 may be juetified.    Thi. will be amplified in later chapter.. 

The Green', function method i. employed here a. it i. found to be 

powerful enough to include all the re.ult. of previou. author, and al.o to 

extend them,  a. will be indicated in .ub.equent sections .    Thu. a unification 

of all the re.ult. both a. to the nature of the interaction, and a. to the u.e of 

a unified and elegant technique for attocking the pre.ent problem i. hore 

attempted.    All the previou. authors concerned them.elve. with plane wave, 

while the present work indicates extensions to Bloch wave. also. 

Besides making a more complete study of the ground state of a 

polarized gas,   the few non-rigorous attempts of Wohlfarth [15],   Lidiard [10], 

and Bell [ 1 6] to justify the use of a Weiss field and FD distributions will be 

here given a more satisfactory justification.    This consists in showing that 

a quasi-particle picture is valid in metals as was done by Luttingcr [39] 

for the ordinary interacting electron gas,  whereas the authors quoted above 

could only show the consistency of such assumptions.     They could prove that 

the exchange energy is in general a power series in   ?2. Here it is seen 

to be a complicated function of   f2 ,  and so the convergence becomes slower 

as   ?2 approaches unity.    Bell showed how the partition function could be 

correctly evaluated in the presence of a Weiss field and, hence, also established 

-•i 
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the validity of the   FD   distribution* for the particle.    These fell out 

automatically in the present approach. 

On the collective aspects of the sytem, most of the authors confined 

themselves to the short-range Stoner model and the F state.    For completeness 

the Coulomb gas must also be studied in the same spirit.    This problem is 

much harder.    In the present work the spin waves are studied in detail in the 

long wave limit and a formal power series expansion is also given for the 

frequency of the spin wave.    Herring's [22, 23] method,  though ingenious,  is 

valid only in the long wave limit.    He used a perturbation method for the HF 

equations and from the agreement with the present work,  this may be viewed 

as RPA in a different form.    Thompson's [24] determinantal method is very 

cumbersome.    The method of Edwards [25] gives a technique for evaluating 

the coefficients of various powers of   q   and,  hence,   is also quite cumbersorne. 

The method of Kubo,    et al.  [26],   uses a factorization of the Green's functions 

which is equivalent to RPA,  and this is here rederived.     Baym's [27] 

Boltzmann equation technique is equivalent to RPA right from the start and 

it is hard to see the complete equation before the approximations are made. 

Antonoff's [29] method is similar to that of Kubo,  et    al. ;  his use of the 

"degenerate kernel" approximation may be shown to be equivalent to the 

localization of the spins,  with a Heisenberg-type interaction.    This invalidates 

the purpose of a fully itinerant theory.     The same objection is also applicable 

to the work of Shimuzu [ll],  who explicitly assumes in an ad hoc fashion 

a Heisenberg-type interaction between the electrons. 
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h     . Thus,  it im seen that there i» only a sketchy account of the polarised 

gas using field theory techniques in the literaltÜ«»^,There is thus scope for 

* further generalization of the problem in that one could include the results 

found in the literature as special cases of the Yukawa potential. 

* A-    Ground-State Properties 

The ground-state energy of a system of electrons in a positive back- 

ground in HF approximation at T = 0 K is here computed as a function of 

?(0 <( < 1 )   when the electrons are interacting through a Yukawa potential. 

The problem is studied in detail as a function of screening ((), magnetisation 

( X )   and density  ( ar   ). .    To determine the ground state,  the absolute 

minimum of the total energy as a function of   ?   for various   ar     and   f   is 

studied.    It is found that for   (   much smaller than the diameter of the ferro- 

magnetic Fermi sphere,   the system behaves essentially like the long-range 

Coulomb system.    It is found in this case that the   F   state is the ground state 

for low densities and the   P   state for high densities.    The UF states can 

never lie lowest as they are relative maxima.     This indicates why the 

comparison of just the energies of   F   and   P   states in the Coulomb case is 

sufficient.     For   f   much larger than the diameter of the ferromagnetic 

Fermi sphere,   the gas behaves like the short-range Stoner gas with all the 

three states of magnetization having the possibility of being the ground state. 

This difference in the behavior comes about because of the different forms 

the exchange energy takes in these two limits.    In this connection,   it may 

be mentioned that Brooks [6b] ,   using a generalized Weiss field model 
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consisting of a power series in   (     of the exchange energy ( cf. Wohlfarth [15]) 

had shown that the UF states cannot be ground states if the ratio of the 

coefficient of   ?     to that of   J     exceeds a certain critical value.    This 

observation had escaped the notice of Wohlfarth (loc. cit.) who did not examine 

the consequences of the generalised Weiss field.    The parameter corresponding 

to Brooks's here is the screening.    It is clear from the prettenl analy»i» lhal 

as   f   increases the criterion for the   F   state changes abruptly beyond a 

certain critical value. 

These results are summarized in Fig.  2«, b. 

Here a plot of the coupling strength (in(ar  ) in Fig.   2a and Kö'/e^. in Fig.   2b) 

against   (j   is presented.    This clearly shows that for   5^0.9   the nature 

of the ground state changes.    A more detailed description will be given in 

Section II.    The possibility of SDW being ground states has not been examined 

here for the Yukawa gas.    From the work ot Overhauser it is known that the 

ground state is an SDW state for densities at which the present theory shows 

the   P   state to be lowest. 
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B,    Collcctiv« States 

For   f s 0   we have the Coulomb aae.    In this case it is fotwd that the 
• i « 

density response in RPA with the exchange contribution completely neglected 

shows plasma resonance.   When the exchange is neglected the medium behaves 

as though it consisted of two   noninteracting electron gases with different 

effective masses.    This is shown in Table 2.    The transverse spin suscepti- 

bility also fails to show spin waves when exchange Is omitted;    however, the 

TABLE 2: Individual Particle and Collective Excitations 

(The Coulomb Gas) 

Type of Disturbance       Collective 
-JLt ' Mode  

Scattering 
States 

P State 

y-density                " ^ "p| T « = E^k+^-E^k) «-«p 

spin susc.               «~ Wp. {<r =  t , J)              "1 no re8 r                                         rM. j                                                      \ respon 
spin susc. [w~q2(8pin U)= E^k+q)-E ff(k) J 

density-« 

long. 

trans,   spin susc. 

WPI 

onant 
ponse 

k-k. 
E^ (k) = k2/2m - e2A k [k kFa+ -y ^ " 4* > ,n ' T^T^ 

F<r 

k radius of   <r   Fermi sphere;    (or small   k , 
Fa- 

E^lk) ~ ^/Zm^ - ^f-kF<r ;  -jl- = ( -^  + 3^-    ) • 
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equ&tioß d««cribiag it when exchange is Included can be «olved U the long 

wave limit.    It is for this reason that in Table 2 the spin waves are si 

within brackets.    This was also done by Fukuda [12j .    TTie method o£ FukudT 

is used here and it is found that he made an error in the computation of Che 

coefficient of  q   ;    he found in the   F   state,    u^w ~ (q2/*» )(1 - 5, 145/, ) 

whereas it is shown here that to the same order of approximation as Fukuda 

wsw ~ ( q /2m ) (1 - 5. 344/rs ) .       This result must be compared with that 

derived by Herring (22j :    «^ ~ (q2/2m) (1-5. 485/r^). 

For the sake of completeness the results for the   P   state are also 

given in the Table.    Here only the plasma mode exists when exchange is 

neglected and there are no other excitations.    The way the scattering states 

and the bound states are disposed is similar to that given earlier in the 

section on the short-range gas. 

In the Yukawa case,  the most interesting collective mode is the spin 

flip mode,  after including exchange contributions.       For any   f ,    and for 

small   q ,  by using the same technique as Fukuda,   the coefficient of   q2   can 

be determined.    For the   F   state,  for   | = 0  (Coulomb) and for   ^ - oo 

(short range),   this goes over to the results obtained earlier.    In the short- 

range case,  a general dispersion law for spin waves of all q ,  and any 

magnetization   ? ,   (at    T = 0OK)   is obtained.   The coefficient of   q2   for the 

UF state is here derived.    For the   F   state,  this goes over to the result of 

Herring   [23].    Also,   the spin waves merge into the scattering states,which 

are of Stoner type,at about 3/4 the   F   state Fermi momentum and the spin- 
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wav* «n9?fy at ihic vain« of the wave vector is about 1/16 of tihte   F   state 

Fermi energy.   Similar estimates were made by Thompson for the   F   state 

and by Baym for the ÜF state« (loc. clt,).   In the ÜF state, the spin waves 

are whereas the -stable for  K*/er >(l/5) [iLn^ - (W^.j 

condition is   Kd'/er = (1/2) R^P    g'M ifl J .    Thus it is seen that 

the spin wave stability condition is always weaker than the Stoner condition. 

Aleo the   q for the UF state* tocnrnes smaller as   t   derreases «s 
max 

described earlier. 
t 

The formalism given here can be modified to treat the Overhsuser 

[18] problem of the SDW states.    We have rederived the Overhauser integral 

equations by our method in a straightforward manner.    The extension to the 

Bloch states is also indicated here.    The collective excitations of the plasma 

type for the Bloch electron system in the unpolarized case were first derived 

by Ehrenreich and Cohen [40] who used an equation of motion method.    This 

is here generalized to the polarized case.     The other response functions, 

namely the longitudinal and transverse spin susceptibilities are also computed 

for the Bloch scheme.    The possibility of the existence of spin waves in the 

Bloch scheme could only be indicated in certain crude approximations due to 

the very complicated nature of the equations describing them. 

In summary,  the Yukawa gas behaves like a Coulomb gas for   f < 0.9 

with no UF states and for f > 0.9,  like the Stoner gas,  as displayed in 
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Fig«.  2a, b.   Also «pin waves are present on such a model, and the coeöictent 

of  q     for the spin-wave frequency is computed.    The results go over Into 

those derived by Herring for the Coulomb and Stoner cases when appropriate 

limits are taken (with some modifications for the Coulomb case).    It is shown 

that whenever the HIT ground state is an   F   state, it also exhibits stable spin-, 

wave excitations.     In the Stoner gas, the spin waves for the   F   state are 

stable when the ground state Is the UF state.    Also, It is shown that there 

exists a   (^^   for the spin waves at which they merge with the scetlertng 

states.    This   qmax   for the spin waves decreases as one decreases   C • 

The scattering states are the usual Stoner-type excitations. 
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ARPA-11      II.    SINGLE PARTICUC EXCITATIONS AND THS 

\ GROUND-STATE PROPERTIES 

1.    Introdttctton 

After «atablifehing th« notation briefly, a discueeion of the eiagl« 

particle •Utea of the eyetem under consideration will be given.    The notation 

will be for the most part that of Martin and Schwinger [41] or equivalentiy 

Kadanoff and Baym [42] ; the latter will be henceforth referred to a«   KB . 

For the sake of completeness a brief summary of Chapters 1 ,   2 t mid 5 of 

KB will now be given. 

The quantum mechanics of a system of identical particles are best 

described in terms of second quantized operators, namely the creation 

operator    ^r   ( ri ti )   and the annihilation operator   tj/     ( ri ti )   (when acting 

to the right).    Here   r.   stands for the spin orientation and   ( r. t. ) represent 

the space-time point, which will be represented in the future by   1 .    The 

dynamics of the system is described by 

H=    ^   J   d3r^{rt)[-^r  +V(r)l^r(rt) 

+ I Z    J j,d3^d3^'dt, ^;('t)V(»,t,>V(r-r«it-t')^r,(r't')^r(rt) 

"' (2.1.1) 

in units where  jfi = I.     Here the first term represents the kinetic energy, 

the second term,  the single particle potential,  and the last term represents 

the two-particle interaction potential between the particles.    The interaction 

potential is taken to be instantaneous so that 

tP(r.r'; t-t')=V(r-r')   ö(t-f) (2.1.2) 

II-l 
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Wa will henceforth writ«   tt = t + 0 ;    G{ rt; r'tf) = G( rr« i 0* ) » G(U'*) . 

Vl r-r' ) is normaUy the Coulomb potential aiwl it i« left unspecified for the 

present so as to preserve maximwm generality.   Since we are considering an 

electron system, the Pauli exclusion principle is written in the form of a set 

of anti-commutation rules at equal time» for thess operators: 

[^{rt),^,(r't)l+ =0; [^(rtn^ju't)^ =«r4r.«
(3)(r-r') (2.1.3) 

where [A, B] = AB + BA . The equation of motion for any operator X(t) 

in the Heisenberg representation is .. c . 

8X(t)       rv/M   Hi (2.1-4) 

where   [A, B]     = AB - BA .    In order to study the thermodynamics of the 

system the grand canonical ensemble average is defined by 

<X> = Tr{e-PtH-*4N)x}/Tr{e-P(H^N)}- i^U 

Here   Tr   stands for the trace on the states of the system;    H   is the total 

Hamiltonian and   N   is the number operator   ^ ^ ( rt) lM rt) d
3
r f    H   "the 

chemical potential and   ß   is    l/KT   with   K ,   the Boltzmann constant    and 

T   the temperature on the absolute scale. 

We now define single particle correlation functions 

G><r,in')-±<W) 

G<, (ii')=4-<^Jo,)^o)> 
(2.1.6) 

These are respectively defined for   tj > tj,   and   tj < t^ and for real times. 

These functions define the propagation of disturbances in which a single 
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particl« U added to the ay.tem at »om« space-time poiat   1   and removed at 

J«   in the fi«t case whUe the second defines the opposite order of operations. 

The single particle Green's function may be defined a« 

cwt<ii').4-<T(^(i)^a.))> U17) 

^ where   T   i» the Wick time ordering symbol for Fermions in the present case 

T (^(1) ^.+ (1.)) = gyu tjpi for   t, > tj. -j 
> (2.1.8) 

• - tJtWfJin    for tj <tl, J   • 
It follows that 

G,r.<n') = Gr>l (11.)    for    t1>tl( 

= G^cl (IP)    for    tj <t1'     . 

All the above definitions hold for real time domains.    Using the equation of 

motion for   ^(1),  the equation for   G^ ^ (12)   may be constructed.    Before 

discussing this,  a few general remarks about   G   will now be made which 

follow by virtue of its definition.    Now formally,   aince    Tr (ABC) = Tr(BCA) = 

Tr(CAB),   one has a relation between   G>   and   G<   at the boundaries of an 

imaginary time domain 

Or,  if the domain of definition of   G   is extended to imaginary times 

0 < i t < p ,  one may write formally 

Gr,.'",> l.,^ ' -^ °„.<"'»l.l=.i)| (M..0, 
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along with > 

G„All') ■ G^, till    for   Itj > Itj, 

= G^I<11')    fo»    ItjKltj,     . 

The»« may be written equivalently in the other time variable also.    Since the 

• yetem under consideration has time translations! Invarlance, the functions 

G>,  G< ,  G   are functions of the difference   <t| -tpl only.    In view of this, 

(2. 1. 9) may be written as 

< - .       > 
Gar'{ rl 'f1 ^ =-eP,l  Gar' ( rl 't* ''^ 

{0<lt<p) 

Now the Fourier.transforms in time may be introduced: 

oo 

G,;Vrir*;ü)=Idtei*G^Vrir2;t) 

(2.1.11) 

■ oo 

G,1.2<r.,-2^'=i"<it'!iulc.l
<'2

<rir2i" 
-oo 

(KB use a factor   i   in the first,   and   -i   in the second relation).     Using 

(2.1.11) 

oo 

<•''! 'V "' - -^   I"" ^ ^ <r>r2i '^ ' 
-oo 
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•o that formally one get« 

II-5 

We now introduce the spectral weight function  A (r.r,:«): 
rlr2    *   * 

(2.1.12) 

(2.1.13) 

Clearly then 

\w2
irlT2'* u) = <l   '   nFlu))\,Jrlr2i»* 

] (2. 1. 14) 

where   nF (u) = l/(exp (w-/0 ß+l ). 

One may write a Fourier series representation of   G (1, 2) in view 

of (2. 1. 10) (Chapter   3   of   KB, Pp   19, 20) 
r2 

^Jti-t») V^v^^Z 
v (odd 
integers) 

G^wfl'zi  %> 

(0 < itj , it2 <p) (2. 1. 15) 

where   z^ = (ir v/-iß) + p .    Since the condition (2. I. 10) holds for both the 

time variables,   the Fourier coefficient is given by 

f+iz  (t.-tj 

o 

This must,  however,  be independent of   t2   and letting   t, - 0+ ,   so that 
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But 

fr -rim i.        > 

\.2<'i'zi V-   J dti • 0
Vl^l»$ltll • 

o 

(2.1.16) 

and,  hence,  after some manipulation, 

V,"»'a»S»-3 si- —'^-rp  
Thus,  the Fourier coefficient is just an analytic function 

r du  AWv2;w) 
G

a1a2
(rlr2J8,=    J     ?ir    iTTi  

evaluated at   z = z   , provided   A   has no other singularities.    A careful 

analysis of this analytic continuation is „ivcn in KB .    It is obvious that 

A.r a-  («',',iw)*L«   [G„. m (r.r.; u,+ ie)-G (r, r,; U-ic)J .      (2.1.17) 

This immediately leads to the sum rule 

^ m \^'ir2^^ ^\^rirz^^'\^ri'v -^l 

-K^^'r^ (2. 1.18) 
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becaus« 

U-7 

which ia the canonical commutation rule at equal times.    The advanced and the 

retarded Green*• functions could equally well have been introduced 

v»"2'=+*l V"' *4(2, '♦ * ^ vv 
+ ] 

i|+(t)=l   for   t >0   and   0   for   t<0.      These are related to the causal 

Green's function defined above in a very simple way,  being equal to the 

proper analytic continuation of   G^. ^   (r^j «)   in their respective domains 

of definition. 

To simplify the notation of Green's functions   G (12) may be 

written in the form of a matrix 

/G||  (12) G^   (12)\ 

G(12)   =1 (2.1.19) 

\Gjt  (12) G|j   (12)/ 

This form resembles that used by Nambu [43] in his formulation of the 

superconductivity theory in which the off-diagonal Green's functions are the 

anomalous Green's functions.     Let ( TQ , Tj , T2, Tj ) be the unit and the three 

Pauli matrices 

• 



^wgaaetF^jpijjy^iJWBiiJMi^ipipi.PBWt.. ,n, '. ■ W^^iW^'."!' "'J'.^^'^^^IT1' r*\ ■'!', "-Wl.'.' , L^ 

ARPA-U n-8 

Then the toial number of particle» is by definition nU)-<^/(l)^t (O+Wfl)^! Ü)>. 

In view of (2. 1. 7, 8) 

n(l) = -i[trT0G(li*>l. 

Similarly,the total spin moment i* 

£{1) = -l[trTG(ll+)] 

(2.1.21a) 

(2.1.21b) 

with 

rt{U.-l [tr Ti G(ll+)1 = <^f (D^j (1)+ ^|Ml)tt (!)>    «U. 

Here   tr   denotes the trace on the spin indices.    The spin magnetic moment is 

given by   -*- £ /i« ,  where   JJB   is the Bohr magneton. 

The equation of motion satisfied by Gill') (henceforth, no special 

symbol will indicate matrices are being used, unless otherwise stated) can 

now be constructed,   since the Heisenberg equation for    ^/     (1) is 

'V-/^ ^(n + ^y^T^i-D^^O^d) 

Here,   in the third term on the right-hand side,   the times of   5   and   I   are the 

same.    Then, 

2 

(12) i-i- + -L- 8t. 2m V(l) 
V\91 

-Y   f d43^(l-3)f <T(^+ (3)^ (3)^ (1),//   +(2)) > = ö ö(4)(1.2) 
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«<4,(l-2) = l^llj -rj   öitriz}. 

equation can be recast in term* of  G  and its variational derivative which wii 

be de 

| term 

«      (1 -2) = Ö(3) ( rj - r 2)   Ö {t1 -i2).    The last term in the left-hand side of this 

be defined presently.    (For details refer   KB Chapter 5).    An extra source 

^   ' Z   I ^   V"* V«** ^r(rt> (2.1.22) 
am 
W 

is added to the Hamiltonian   H , and this is made to vanish at the end of all 

calculations.    The operators are still kept in the Heisenberg representation 

and the traces are also taken over the grand canonical ensemble pertaining 

to the total Hamiltonian.    We shall not go into the redefinitions of  G   in the 

presence of   U   and we shall not even indicate by any symbol that   G   is 

evaluated in the presence of   U   unless otherwise stated.    In view of this,  the 

following well-known relationship is obtained:   (which may also be taken as 

a definition) 

1   gU{2r <XW> = < T.(^M2) ^ (2) X (1) > - <^te)j//(2) X X (1) > (2. 1. 23) 

since   U   generates   tf/V .     This follows directly by developing <X(1)>   as a 

power series in    U   and examining the term which is linear in   U .    Now 

T-1 < T ^4(5) s(J) vi) s+(2> ** 
can be rewritten by using (2. 1. 23) as follows: 
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V i 1 -.j-  < T (^    (1) J (2))> 

rI 1 

or equivalently / - • 

y —5 ^r.(i2)=y -f <»^1.ä#J»#- i)^(2))> 

rI        1 

♦ [Itrr   G{TT+)3G(12) 

or 

-y. 6G(12) ^ + 

a^*1'^!  > 
-:-—    - [itr T    G(T3T )]G(12) 
T     %      ' O 

'J        ^5 

Thus 

(ii7t^--V(1i)To+iT.Id4I*'(1-5,[trToG("t)'|G(1^, 

=  r   «(4) (1-2) o 
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We shall henceforth use   r   = 1 or assume its presence.    An inverse matrix 
0 N 

Green's function may be formally introduced: 

J ?      • U. 124) 

^ yG(lI)G-1a3)d42=  «(4)(U3) 

By taking the variational derivative of the second of these,  and multiplying 

the resulting expression from the right by a suitable   G , and using the first 
» 

of the relations in (2. 1. 24) we obtain 

.r- ^  '      ' •GliiL.   =.fd
4T  d4U  G(l?)    0G"   tHl  G(?2)   . (2.1.25) 

ÖU    (3) J ÖU    (I) 

We define a new function,  T (12; 3)   which is often called the vertex part 

T  (12; 3) =7      gG"   (12)       . (2.1.26) 
0 ^    ÖU     (3) 

'3 '3 

i 

Then 

!i|F-+-^r--v(i) - (_^ijut(i) -(-^
1) ^(D + iJd^d-IXtrGdT^nGd^) 

+ i rd4Id4?d4?'2Al-DG(14)ro(??; T) G(52) = ö(4)(l-2)   (2. 1.27) 
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.-I Multiplying thi« on the right by  G~lUl') and integrating over   2  and using 

(2.1.24} w« get 

♦ iJd^d-DltrGdJ^)]    d(4,(l-l'> 

*lf&Älk*% GO?) T   Hfj I) (2. 1.28) 

The «olution of this equation must obey the condition (2. 1. 10) when suitably 

extended into the imaginary time domain. 

The new function   1^   may now be determined by writing an equation 

for it using its definition and the expression (2. 1. 28) for G"1 .    This equation 

will now involve another new function   «ry« U   and so on.   Thus a chain of 

equations is obtained.    The equation for   T     is 
o 

ro(12; 3)= - ö<4)(l-2) ö(4)(l-3) - i^d^d^d4!^I-Dtr[0(12)^(23; 3)G(3T+)J 

ö(4,(l-2) 

- if dVd^d^Vit/d-UGdDT  (34; 3)G(42)r  (I2:T) 
^ Ort 

I') 

+ i] d4ld4zlJ{l-l)G{ll)rol (72; T3) (2.129) 

where 
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*. 

T    (T2;T3)   »  J     « T (IZjT) . 

The various terms in (2.1. 28) may be interpreted a* follows.    The last two 

terms are due to the two-particle interaction« whereas the remaining terms 

arise from the single-particle parts in the Hamiltonian and the external source. 

The first of the last two terms is the Hartree self-energy, which, in the absence 

of external density disturbances,  cancels precisely with the positive back- 

ground.    The last term contains the contributions from all kinds of scattering 

beginning with the exchange processes.    (The Hartree term may also be 

thought of as arising from direct scattering processes).    In view of this 

interpretation of the terms in   G~    ,  the terms on the right-hand side of 

(2. I. 29) for   F    may be similarly interpreted.    The first term is due to the 

direct external perturbation,  the second tern arises from the density 

fluctuations stemming from the Hartree self energy,  the third term include« 

all kinds of complicated scattering processes and the fourth contains various 

forms of corrections arising from changes in the vertices due to interactions. 

This last term is of second order in the interaction potential.    The equation 

for   r     is seen to be nonlinear and inhomogeneous.    Because of this,  as a 

crude first approximation,  its solution may be taken to be just the 

inhomogeneous term.    This,  in  (2. 1. 28) gives the well-known Hartree-Fock 

app roximation. 

Before discussing the various forms of these equations,  a schematic 

outline of the method of solution of (2. 1. 28) will be given.    Let   U    = 0 in 

M 
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(Z.^Wmnd the last two terms ia it be denoted by 

Here the Hartree energy is retained just for the sake of completeness.    From 

its structure, it may be written in terms of   ( 1 . r. . T9 . r   ) 

Jan = adi^+^.^di., 

containing four unknown functions. When this is substituted back in (2. 1. 28), 

G"1(11,> = (ilt7^ -v(u)«w„ 1')+   O(11»)+T£(11'). 

Hence   G   is expressed in term» of the unknown function,   a ,  & .       Putting 

this back in    J    ,    which contain,   G ,   fully determines the unknown functions. 

So far no mention has been made of the geomefric structure of the 

medium.    Three cases will be considered.    In the first two,   the single-1 

particle potential    V(r)   will be taken to be identically zero,   so that plane 

waves are the solutions for the  nonjnleracting   system.    Here there are 

two possibilities.    One is the translationally invariant case,  while the second 

is the symmetry breaking solution of the Overhauser [IS] type.     In the third 

case   V( r)   is taken to be a periodic potential such that the  noninteracting 

system is now described by Bloch waves.    Here again there are two cases 

• 

: 
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corresponding to the ones for the plane waves but only the symmetry preserving 

solutions will be here considered.    (We need to know the nature of the non- 

interacting system, for the solutions of this are used as a complete aet of 

states when the system is interacting in much the same way the normal modes 

& of vibrations of a lattice are employed in treating the enharmonic vibrations). 

2.    Spatially Uniform Solutions 

If the system is taken to be spatially uniform,  then the Green's functions 

depend only on the apace-time coordinate differences.    In view of this one may 

take Fourier transform* in all the variables;    the Fourier transform variable 

corresponding to the space coordinates has the significance of wave number 

for single particle states.    Let,  therefore, 

G(E«)= j   d*(l-l')e '     ' *    1      G(l.l') (2.2.1) 

We will often make use of the four-dimensional notation:   p. 1 = (p-Ji-P/jti) ; 

P = ^PQ^»  P0   iS a fre<luency or energy variable (which will be equivalently 

referred to as   u ).    Single   G   is a   2x2   matrix,   it can be written in terms 

of unit and Pauli matrices: 

G(l.l')   =y-   [g(l-l') + T • £{l-i') 1 . (2.2.2) 

Correspondingly,    g(j)u)   and   £(£u)   are defined similarly to (2. 2. 1).    Taking 

t., = t.   - 0,  we have from (2. 1.6) 

G(l-l'+) = -L   [g(l.l«*) + T-  £(l-l,+)l=-iG<(ll') . 
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With this in (2. 2. 1} we may define (c. f. equations (2. 1. 21a, b» 

n^l^ *  1   ST «^w^ • = total »«nab«' ot particle^ of 
momentum   £ (2. 2. 3) 

£(.£) "  1   Jri v,'£u^ •,WO s *Pia &*MitY o{ momentum    j» 

The.simplest approximation is to take the first term in (2. 1. 29) as the 

solution for T o 

T (12: 3) = - ö(4)(l-2) «(4)(l-3) (2.2.4) o        ' 
The expression (2. 1. 28) for   G'1   after taking   U = 0 (also V( r) - 0 in the 

present calculation) take« the well-known Hartree-Fock form:   (here the 

Hartree self-energy term is dropped as it is cancelled by the positive back« 

ground) 

GI^(l-l')=(i|Er*^-}»(4)0-l,)-lVO-l')GHr(l.I«)(2.2.5| 

Taking Fourier transforms, 

i3p  - ' —* 

(2»)' 

,3^ ^ ,_ 1 

GHF   (PU) = U"P  /2m-i\  —^-^  lftE'2.) GHF   ^E "^ e 

ü-p2/2m-if   d£d'J ^(E-J)nF(ü)A       (pÜ)ei(JO  (2.2.6) J (2jrp r nr    _ 

. 
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as also by definition (2. 2. 3} 

From thi«   G«-.   can b« obtained by inverting the right-hand «id*.    Let 

| ^ 41 W^^-^r' (2-2'8> 

«   {£^) = unit vector of 

Ä    J (2») 

Then after reducing to partial fraction« 

GHF(pu) = -y t8+(P«) + g_(p«)l 

yt 

] 
+ 4 ^ • i (p) [g+ tpu>-8.(p_w) i (2-2-l0) 

It is seen that in this approximation,  there are two poles in the «ingle- 

particle Green'« function corresponding to the two spin orientations of the 

particle«.    If the last term is omitted,  the usual   HF   «Ute« are recovered. 

Hence, 
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g (£ W) = [g+ (£«) ♦«. (jg.*»)! 

*(£«)* 1(£) [g+ (^W) - g. (^M)) J (2. 

On integration over the   w plane &• specified by. (2. 2. 3) the foUowlnf? 

expressions are obtained: 

n(Z)   =[nF(«4.(iL)) + nJ.(»,{I.)) J 

jr(p) = i(E)[nF(tt+(jt)) -nr(i*   (Z))l    J (2.2.11) 

with   nr(x)   •   Fermi function.      The above results were derived by 

Suris    [17] also.    Thus, defining   n(£)    and   ir(j>) as in (2. 2. 3) and recalcu- 
• ■ e 

lating them in the HF approximation gives us the equations (2. 2. 11) to 

determine them.    Note that   u.    contain (n, a) .    These equations are thus  - 

nonlinear integral equations for   n, r   of the Hammerstein type.    Suris 

(loc. cit. ) used the theory of these equations to derive the usual Stoner results. 

Discussion of a few aspects of these results may be in order here. 

The up and down spin states are pushed apart and the energy difference is 

r ̂(p-p)£(p)d3p/(203 

This is proportional to the total magnetization if one assumed x/{p) = ^ , 

independent of   £,  or 1/ to be short ranged,  since   \ jr(p)d p/(2v)      is 

the total magnetization of the system.    From (2. 2. 11) then,  one has 



'WH^—p-  ^Fk^-T**-^*^!) 
i » i ^ «yCjE'/Zm- -f V M+ -J. v l»^^!)! (2.2.12A} 

and 
d' 

♦»r^/Zm-^-^N+^^^j)! <2.2.12M 

These are precisely the expressions assumed by Stoner[4] inhis collective dectrun 

theory of ferromagnetism.    Thus in the case of zero-range interaction,  and 

in the   HF   approximation, Stoner's assumptions are fully justified.    The 

Stoner's constant Kß'   is seen to be related to   17 through the relationship 

& =   (2K0'/N) . (2.2.13) 

These results were derived by Suris [17] and also anticipated to some extent 

by Thompson [24] .    They were included here for the sake of completeness 

and to provide a frame-work for generalization to the Bloch case and to the 

symmetry breaking solutions of the SDW type.    Before deriving the Overhauser 

equations with the present formalism,   the relations (2. 2. 3') will be recast, 

in a form that corresponds to the Overhauser equations in the special case 

that the symmetry breaking parameter   Q   becomes sero.    To see this, let 

us de finis 

-i(i) = 4 y^P-a).^!) d3q/(2»): 
(2.2. 14) 
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(this i» actually related to Overhauaer's   gCp) ) .    Multiplying the «ecoud ol 

(2. 2. II) by ^/(p - q)   and Integrating with respect to   £  , we arrive at 

\BJ%)\       (2») 
T' 

But from (2. 2. 8) 

Thoa 

r rn
F<M+<jL>>-nF<« <a))l        A 

.(p) = \V(p-q)        ^    ^       i—^    .<!) =V--(2.2.15) 
J L      «+(al-«.<i>   JT     <2ir>^ 

3.    Symmetry Breaking Solutions of the Overhauaer Type 

Besides the usual plane wave solutions of the   HF   equations,  Overhauaer 

[18] pointed out that there are symmetry breaking solutions which are also 

possible ground states of the system.    Overhauser associates a plane wave 

of the form   exp (ik • r)    with the up spin and   exp ( i (Jk + Q)- r)    with the. 

down spin.    Thus the vector   Q    is a measure of the inhomogeneity,   or in 

other words,  a measure of the breaking of translational symmetry.    The 

unrestricted   HF   solutions of this type are alternative candidates for the 

ground state of the system equally acceptable as the conventional ones. 

Overhauser first introduces such a term into the HF equations and then finds 

conditions for consistency very similar in structure to (2. 2. 15).    His   g(k) 

is seen to be a convolution of the interaction potential with the intrinsic 

spin density.    To derive Overhauser's expressions,  the following 

'     I 
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redeflnmoa. ai th, Fourier triform, of ^ G«Äu^ function. 

Gi 

Are neceaaary: 

(2ir) 

.3 

Then the HF equation (2. 2. 5) takea the form 

(2. 3. 1) 

O'V)   = 

w- C|   (k) 

-g| f(is) 

*f |(k) 

«  - ^(k+ Q)^ 

(2. 3. 27 

where 

^(k) = ls2/2m + iy^(k.k')Gt5(k.w.)eiw,<»+   ^ d"' N 

^(k + Q) = (k + Q)2/2m + i (V(k.k')G. l
<(kV)aiM,0+ d ^ ^ J        -   n - -^r- 

«tJ<k) = lj%^(k.k.)Gn
<(k^)al",<»+   d-' ^ 

«it(h) = iJ?/(k.k')GnVW')eiw,0+   d-d^, 

7 
(2.3.3) 

■ * 
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Hence,inverting we obtain 

G{k«)   = 
(' .|t(!s> 

where 

«+<*i)    3 

(w-u+(k))(«-«Jk)) 

jet(k).^(k.Q)    | 

U.S. 4) 

«(k)- eiik + Q) \ i   % (2. 3. 5) 

Theae are precisely the modified single-particle states due to the up-down 

coupling derived by Overhauser (loc.  cit.).    We may recast (2. 3. 4) in the 

following form to complete the connection with Overhauser's notation. 

Putting the expressions (2, 3.4) into partial fractions one obtains 



I 
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G(kw)- 

f«+(,kw)-«JM] 

\ 

«I ♦(*) f 1    rM.(k)-<f(k)7 / 
1 U [g+(k«)- g. (kw)lV - -1-2 1^L_ g  {k«)}        / 
L«+(k)-«Jk)        + " -  J   LM

+(k)-u{k)J   "  ~ J       / 

where 

g+(kw)   =   (l/(u-«+(k))l. 

From (2. 3. 5) one has the following easily verifiable relationship« 

(2. 3. 6) 

(2.3.6«) 

(w+{k)-€|(k)) 
~ /ctU)-ei(k + 9)\        //«(k).ei(k + Q)>? 

(u+(k)-€|{k + 9)) = 

(w_(k)   - ej   (k + 9)) 

-ci{k 

(2. 3. 7a) 

/et(k)-ci{k + Q)\       //c»(k)-cl(k + Q)^ 
k) 

(ujk) - e|(k)) (2. 3. 7b) 
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(w+(k) - ej (k))2 + g|j(k)gj| (k)   . S 

«   U+(k)-tt (k))(W+(k) - cj(k)) 

(w.(k) -cj(k))2 + gtj {k)Mj|(k)   * 
- 

Mw+(k) -«Jk))(u_(k) -«|(k)) 

as also 

(2. 3. 7c» 

(2. 3. 7d) 

(2. 3. 7e> 

(u+(k)-C|(k + Q))2+g|j(k)g| |(k)= (w+(k)-w.(k))(u+(k) -c|(k + Q)) )= (w+(k)-« (k))(u+(k) -e|(k + Q)) -I 

) = (wA(k)-u (k)) (« (k)-«   (kfQ))J (u (k)-ci(k + Q)) +g| i(k)g| |(k) = (w+(k)-u_lKiM«.lK)-ej   l^ + U 

(2.3.7£) 

From the coefficients of   g+(ku)   and    g_(ku)   in (2. 3.6) it la reasonable 

to set 

cos d. 

■   2fl sin v. 

u)+(k) - cj(k + Q) > 

u+(k) - u  (k) 

(2.3.8) 

whose sum is clearly unity. 
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From (2. 3. 7«t f) the choice of the branches   w    in*y be removed end 

(2. 3. 7e, f) may be written «• 

(w- €t(k))2 + gj j(k) g| |(k) = («+(k) - wjk» (w -*j «k» T 

><2.3. 
(w-ej (k + Q))2*gf|(k)gjj (k)» (M+(k). w.{k)M«-<| (k + Q))J 

Using these results for   {w+(k)  -W.(k))   in (2. 3. •), 

7g) 

2 (w {k)-cl(k + 9)) («+<k)-e#(k)) 
COS   0.      =  * y *' 

- («+(k).«j(k))2 + gt j(k)g| |(k) 

and in view of (2. 3. 7d) 

cos  0. 
(w+(k).c|(k))Ä + g||(k)gj|(k) 

We could define quite generally 

2Q 8n(k)g| t(k) 
cos -o 

- (u- c|(k)>^+ gf |(li) gj f(k) 
(2.3.9) 

with the specification of the branch    and the definitions of  0,    the same as 

given by Overhauser.    Moreover,   from (2. 3. 8)   and   (2. 3. 7d) 
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2 2 
COB 6.  Bin 0.    « 

-     I     (u+(k).w(k)r 

«tt<fc)gn(^) 

I7€t(k).e.(k + Q)>f 
10) 

We may now write   G(kw)   a» 

'[co«2dkg+(kw) + 8in20k g(kw)J    cos Ök«in«k J-U (g+(kw)-g {kw)r 

G(k«)=      . 

/g| t<>E) 2 , 
coaÖ.sinö   J-L! (g+(kw>-g  (ku» [sin fl. gJ^+co»  fl. 8  (kw>Ji 

-       -   g| J(IL) - - 

(2.3.11) 

These may be substituted back in (2. 3. 3) to give 
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i      r d3^, 

€|(k) = k /2m-\ -^^(k-k'Xco.^    np.Cw.Ofn + .ln^.n^« (k«))I 
-   \iM\ RJTT— *'    — 

(k + Q)2     r  d3k' «. ._    , 

r ^ /gfi (k*) r d k» /gii (k*) 

(-)sJ ü^  -"-Vifn^r co,ök',indk'fnFK(?i,)>"nF<w-^'»}> 

(2.3. 12) 

re the consistent sign of the square root in (2. 3. 10) must be used.    If 

lese we take,  as was done by Overhauser,  gti   = gi«   = g , and assume 

Ml 

*' J   (2W) 

(2.3. 12) 

listent sign of the square root in (2. 3. 10) must be used.    If 

m wiese we «ice,  as was done by Overhauser,  gti   = gi«   = g , and assume 

only   u^Ot') is occupied,  then we recover all of Overhauser's results 

including the definitions of   cosö.   .     Thus a generalization of the Overhauser 

results is here achieved.    Moreover,   if we take Q = 0,  we see immediately 

that 

k2 r    d3k' 
\     r   'Z/Ck-k^nCk')?    |s(k)| 

Üiö3 

with   s(k) defined as in (2. 2. 14),  which are the same as those in (2. 2.8). 

klo/-.  r-.t.—   It    1    I n\ Also from (2. 3. 10) 

or 

= 5 4|.(k)|2 

- " 2|ll 
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so that 
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I 
which is the   Tj   component of the equation (2. 2. 1 5),etc.    Thu«,  the Overhauaer 

results are the generalisations of the usual Stoner conditions written in a 

slightly different form.    Incidentally,   (2. 3. 12) generalizes the Overhauser 

results for finite temperatures as well as for finite magnetisation. 

4.    Homogeneous Solution» Involving Bloch Electrons 

Here a brief description of the extension of the above results In the 

conventional case (Q = 0)   will be given for Bloch electrons.    Let  b« ( 1) 
Ik 

be the stationary Bloch 'unction satisfying the Schr3dlnger equation 

(-Vl
2/2m + V(l))bik(l) = ci(k)bik(l) (2.4.1) 

where   I   is the band Inde« and   k ,   the reduced wave vector of the electron. 

The Green's function in the Bloch   k    space can now be constructed ( a 

continuum of   k   Is here used for convenience) thus 

G(1|,)=I   I   b|k(l)bik*(l.)G(lk;trtlf)i!lL (2.4.2) 
I  IBZ (2») 

Here    IBZ   Implies that the sum on   k   Is over those in the first Brillouin 

zone.    This Is now substituted In the   HF   equation (2. 2. 5),  and neglecting 
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ümkJapp proc«ft8ea,  the Green'» function in the HF «cheme is derived;    this 

is very «imilar to the plane wave case (2. 2. 10) buTiftth^he pole« at 

«r(p)'c|(p).^y^LJ^(p.q)|<|p|i.q>|*nj.(q, 

^X V(p-q)(<ipIi»q>I2^,(q)|      C2.4.3) 

Here 

7/(k)   =  J /I»   V((r()d3r; 
unit cell 

ipkq> = J       uip*(l) urq(l) ^l 
I 

. 

(2. 4. 4) 
unit cell 

where   ^    ( r)   is the periodic part of the Bloch function,    b#   ( r) .     The self- 'ip 
consistency conditions (2. 2. 15) now take the form 

^(£) = I yi^T^(p-q)l<'pk<i>l2 • 
|i (2l') 

*py 

—+  ' 1 £ «i |w|, (q)-uir(q) I (q) (2.4.5) 

This represents a system of equations in which the band polarizations are 

coupled.     The neglect of Umklapp processes is justified if the bands are 

broad and the local field corrections neglected (Adler [44] ).    It must also 
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be pointed out th*t In deriving (2.4. 3) one neglect« the contribution« from other 

determinantal «täte« (or, the configuration interaction« are neglected).    The«« 

appear in the present formalism since the «econd quantisation tcchnlqo» Includ*« 

ail the determinant« that can be constructed out of  ^O).    The propertie« of 

the Bloch functions are such that the matrix elements of the two~particlo inter- 

action potential has a restriction only on its   k   vector parts and not on the 

band indices.    This implies that there are contributions to the matrix elements 

from all the four baud indices and only three wave vector«. 

5.    Discussion of the Ground-State Properties 

In the last few sections the single-particle   Green's functions for a 

polarized interacting electron gas are studied in the HF scheme.    This show« 

that the single particle states in HF split into two,  corresponding to the two 

directions of quantization of the electrons,   parallel and antiparallel to the 

internal polarization.    In the present section,  the ground-state energy of the 

system is computed using the Green's functions derived so far^    It can be 

shown that the expectation value of the Hamiltonian (2. I. 1) with U = 0,   can 

be written as 

o o    tj—tp+O l1— 

(- i - y ] \    2m 2m    / 
G(ll')>  dr.      (ß :    volume of the system) 

(2. 5. 1) 
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Thi« is related to the fr««   energy,    F ,  of the «yetem through the relftUon«tii|» 

^-(PF)   =<H>/QÄ   . W (2. S. Z) 

It is, however, the ground-state energy whan T ■ 0oK. We shall discuss the 

homogeneous and the Overhauser cases separately (the latter is included only 

for the sake of completeness). 

(a)   In the spatially uniform case,  using the Fourier transforms as in 

(2. 2. 1) for CKH'),  and performing the indicated operations in (2. 5. I) one 

finally arrives at 

lP = I I tr Kpo + p2/2m)G(ppo)l 
ipoO*   d3p     dpo 

(2. 5. 3\ 
U»)'   2»i 

Here we have used a four-dimensional notation as explained earlier.    From 

(2. 1. 27) (with U = 0,   V = 0) it is easy to verify after defining the Fourier 

transform of   F    to be o 

ro(12;3)=  j'Ad^    eiP(l.Z)Mq(l-3)   ro(p;q) (2. 5. 4) 

that 

[po- p 2/2m + i ^/(p = 0) J [tr G (p2)] 
ip70 d p. 

+ i jV(p-p2) G (p2) ro (p ; p-p2) 

(2») 

+ .4 ip2oo  d p2 

-=X lG(p) = I 
(2»)4 

(2. 5. 5) 
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x   Let us call the last two terms in brackets In the left side of (2. $.5),  Yep), 

which is a   2x2   matrix.    Then formally one has 

G(p) 

P0-p2/2m*^(Bpo) 

Putting this in (2, 5. 3) and after some manipulation,  one gets Anally 

<H>       1     f    d4p 2/,      , .        ,    ^a0 

T-ir]   £**    p/2m[trG(p)J.    ••    . 

T^<P = 0>[l^^G(P)l-lPo0 j 

(2»> 

.0+ .♦ 
lPo        l%0 

(2. 5. 6) 

This is quite general and involves no approximations.    The first term is the 

kinetic energy,   the second is the Hartreo energy and the third term contains 

energy due to all the interactions save the direct Hartree term.    The 

appearance of   1^   in only the last term is significant.    From this it follows, 

as will be shown soon,  that  the Hartree term will not be screened at all by 

the interactions.     It is to show this,  that the Hartree term was here 

retained.    It drops out in the present problem,being cancelled by the positive 

background.    The expression for the ground-state energy in the HF approximation 

is obtained by setting   I^Cp; q) = - 1.     Then the above expression simplifies 

after using the HF Green's functions (2. 2. 10) 
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<H>Hr      r   dJ
a 

0
0 

.5 ^y 

J 
Suris [17] also derived an expression for the total energy in this form. 

So far no restriction has been made on the form of the interaction 

potential, ^/(q) .    It will be shown in the next chapter that   T   (p; p-q)   is 

proportional to the inverse of a propagating dielectric constant.    In the RPA, 

this dielectric function can be explicitly computed.    In the static limit and for 

a long wavelength,    this gives rise to a Thomas-Fermi screening.    The same 

screening reappears when the collective excitations are studied.    Thus,  for 

the purpose of the present investigation we shall use a Yukawa interaction 

potential with arbitrary screening parameter,  and study the nature of the 

solutions as a function of this screening (c.f.   Robinson et.al ,[37] ). 

We take the Yukawa potential in the form 

^tr) = e2{exp-?kFr)/r   , 

where   kp   is the paramagnetic Fermi momentum,    ?   is a dimensionless 

parameter and   e      is the square of the electronic charge.    We also assume 

that 

nr (u+ (q)) =   ri+ (kFj   - q) ^ 

nF {u- ^ =   ^ tkFi   " q) J 
(2. 5. 8) 

(kFl 
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kj.*   and   k_j     are given by 

kyf =n + r)i/3k n - 

where   f   is the relative magnetization and 

^rf + kF| ^Z6' 2 = N = to*»1 number =   k^ /3w 2 

n+   i« the positive unit step function.    Furthermore,  the   G's   are assumed 

to be diagonal,  equivalent to having the internal polarisation in the   s 

direction.    The single-particle energies in the HF approximation then have 

the following form (c. f.  (2. 2. 8)) at T = 0*^ : 

u+ (£) =i
2/2m - e2/»p / pkr ( I + *K)l/* ♦' 

?2kF
2 + (p-(i + ?)1/3kF)2 

e^k/Hp+d + n1/3^)2 

?kFp   ( tan -1 P + (it>:)1/3kF\        1   /p-(i+nl/3kF 

—r^ )-^     [ f^ ^ 
{2. 5. 10) 

Evaluating    <H>/fto   under the same approximations,  one has for the total 

energy per electron in the HF approximation 

eHFm = <H>Hlr/fi N= E» m + e.m HF" " o t 'I (2. 5. li) 
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with 

e,,„ - 4 iLt|)^(J_,2.1, ci»»o^«^.+o^i 

6t,r). 4 iu|i!^(_L,2. ^(^)tI.04^u/2( 

»•»•$1      »-"^ 

(2. 5. 12) 

where we have Introduced   or^ = me2Ar, « = (4/9»)1'3 = 0. 521, and 

I ^C«) =   {l-2/3«2.8/3.tan-1 (1/«)   ♦ 

j + 2/3 «2 (.2 + 3) ia (1 ♦ I/»2)]. (2. 5. 13) 

I jr(«)   has the following features.    It is unity st   s = 0   and monotonically 

decreases to sero as   s   increases,  and for   «» 1, ^( z) ~l/9a    , which 

4 is obtained by expanding ^(x )   in a power series of   l/s.    A schematic 
i 
• diagram of its behavior is given in Fig.   J. 
i 

j The coupling strengths must be defined properly when the two extreme 

limits   ? = 0   and f - co   are considered.    These are displayed in Table 3. 

From this table it is clear that one may infer the Coulomb behavior for 

5 « I   and the short-range behavior for   f»   1.    The precise value of   f 

for which this transition takes place will be gn -n later in this section.    Also, 

the coupling strengths in the two limits are seen to be related through the last 

expression in the table.    Let us redefine the energy per particle in terms of 

the Fermi energy so that we only need to examine a dimensionless quantity: 
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(2. S. 14) 

The absolute minimum of this a* a function of the magnetisation for various 

values of   f   will now be examined. 

TABLE 3       The Yukawa Potential and the Various limiU 

^(r) = e2(exp-5krr)/r ^(q) = 4ire2/(q2 + ?2kr
2 ) 

kj. :     Fermi momentum 

For   ?«1,   Ulq) = Awe  /q      Coulomb potential 

We define the coupling strength as   g_ a   ar 

(r^ in Bohr units)   (a = (4/9» )1'3   =   0. 521 ) 

For   5 » 1, ^{ q) = 4jr e2/?2 k^.2 = a constant ^0 

(Stoner) zero range potential     • 

We define the coupling strength   g    = rnty k_/2» 
S r 

=   (2ars)/»C2 

In terms of the Stoner coupling strength from (2. 2. 13) 

gs = 3/2 (Kö^/cj.) , €E =   Fermi energy (C = 0) 

Thus 

KöVCJ. = 4/3 (ar  /IT?2) . 
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As     6(?)   ia defined on a closed interval, the end point« must be diecuaeed 

separately.    For the Interior points   0 < f < 1   on« has the usual derivative 

conditions: 

se/t 
.2 ir2>oJ 

The first condition   give« 

(e<r<l) (2.5.15) 

V €r 'min      3?*       [x^G(C/2x)-yG({/2y)J 
■ 

(o < c < i) 

(2. 5. 16) 

where 

G(«) = (1 - 2« tan"1 (l/s) ♦ «2 la (1 + l/s2)) . (2. 5. 17) 

G(s) , like^(s) ,  is monotonicaily decreasing with increasing   s ,  taking 

the value unity for a = 0,  and going to aero like l/6a     for large   a ,    A plot 

of this is given in Fig.   3.    In the above   x = (l + J)   '     and   y = (1- S) '     .    We 

have to examine the sign of    8  t/BK     which is given by (2. 5. 18) to ascertain 

the existence of a minimum in this interval: 

*F     mm        x y / »     J' * 

T 

+  ^(x.y) [ ( ^x-jrj ^ ( lijL^L,    + 

4xy (x-y) x . ? 

+  ( Zip)  tn   (?   V7     )1 t <2- 5- 18) ^(i!^!!,]"! 
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Before dUcussing these la detail, a remark conceraing (2.4. 16^ xnay 

be In order.    It must be noted that the definitions (2. 5. 8) and (2. 5. 9} snake 

the relations (2. 2.11) a tautology.    But M  fcy»   And  kyj    are identifie<l with 

the common chemical potential tor Che two spins  by  ft« relationship 

H   »^(kyl   )  = W-(kr|| 

then (2. 5. 16) follows.    Here   w+   are a» in (2. 5. 10).    This shows that tke 

definitions (2. 5. 9) are consistent.    This will be touched upon again later. 

The following trivial lemma is of great use In deciding the sign 

i  tt/h C Consider a function 

cu) = fm-arag(M) l#iffi.ii (2. 

Then 

^LLL = o   gives (ars)inii| = f' ( ? )/g' U, f)     (0 < 5 < k ) (1. 

5. 19a) 

S. 1914 

where primes denote differentiation.    And 

2.. re -^- = £"(?)-(ar8)m.ng-U,^) = gMr)|f[f(?)/g'(?, Ol 

= gMn[^- (-a)minl(o<c<i) (2. 

The sign of   8  C/d?    »therefore,  depends on the variation of (or  )    1      as '       r smin 
function of   ?   provided   g' ( C , C )   is shown to be positive throughout 

0 < f < 1 . 

In view of this lemma,  a plot of    (Ktf'/e—) versus   {   for various 

f   is given in Fig.   4.    It is easy to show that   g* ( ?, f ),  which corresponds 

5. 19c) 
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to th« derivative of the exch&age energy with respect to   ff   ia   0 <.f < I   I« 

positive,  by just examining it directly.    The plot« la Fig. 4 «how that 

(K£>/cg,)^^  are monotonically lacraaeing with    ff  for   f-» eo   down to 

5=1, and becoming cnonotoaicaiiy decreasing for   ? < 0, f, the { » 0.9 

curve being almost Oat.    This shows that for 0. 9 < f < a> ,  t2C/f C* > •  fo» 

0 < f < 1   giving the possibility of a minimum in this range, while for 

0 < ( < 0. 9,    a 6/»C   < 0 , and hence the intermediate states,  0 < f < I, are 

relative maxima and so are inadmissible as ground states.    After this, one 

must compare the interior minimum with the values at the end points to 

arrive at the absolute minimum. 

In the Coulomb and in the Stoner case,  the following situations arise 

and are here given for the sake of completeness. 

1.    g = 0;    Coulomb gas (Bloch [3]) 

From (2. 5. 14),   since^z = 0 ) = 1, 

3 

(2. 5. 20) 
(o< ?< 1)3 

From (2. 5. 16) 

«"s^in'-r"1*«^^«1-«1^!   <0<? <» 

(ttrg)min   is a monotonically decreasing function of   f ,  taking a value of 

about   »    near   ? = 0, and 0. 63»    near   ?=1.   Hence,  the intermediate sUtes 

(2.5.21) 
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do not occur a* ground states in the Coulomb case.    More explicitly frcea 

(2. ». i«H 
\ 

i9h/9i\r} =-(.Vmi«(x->r>2/3tx2yÄ<0{0<|<l)   (2. S. 22) 
e naia 

So then one needs to compare just the energies of the   P  and the   F   states. 

This gives the usual conditions of Bloch,namely, for   or   > 2. 839 , one 

has   F . 

To see explicitly the equivalence of (2. 5. 21) with connUtent 

definitions of  k^i   and   kpi   , we have 

2 ar 
ß = k/, /2m - ( -F-) kr kFf   = k/j /2m - (V" > ^F kr| 

front which the rest are obvious. 

2.    f ^ oo :   Stoner Gas (Stoner [4l ;  Suris [17] ) 

From (2. 5; 14),  since ^( z ) ~ l/9 «     for   s-♦ co , 

(0 < ? < I) (2. 5. 23) 

From (2.5.16),  since   G(z)~ l/6s     fo r   s -► oo 

(KÖ,/cF)rnin !■ monotonically increasing with f , taking a value of about 

0. 67 near J = 0 and about 0. 79 near ? = I, and, hence, the intermediate 

states can be ground states.    More explicitly from (2, 5. 18), 

WVTw.V.--.. 
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min 

Thl. I. pcltlve and so the unsaturatedferromagnetic .täte, can be ground 

state..    From these one may infer the ueual Stoner criteria. 

The definition of chemical potential here i. 

" = ^Ff/Zm * 4 ^(1 + 0 = k^^ . ^N(1.c) 

from which the equivalence of (2. 5. 24) *ith con.l.tent definition, of  k^ 

and   kpi   follow. 

3.    Yukawa Ca.e 

The extreme ca.e. of   f = 0   and   ? = a> having been reviewed,  the 

ca.e. with finite   ?'.   will now be discussed.    First of all.  the pos.ibility 

of intermediate states will be dUcu.sed in view of the lemma quoted earlier 

(2. 5. 19c).    In Fig.   4,  a plot of (K0'/eF)min   versus   ?   for various value, 

of   5   ranging from 0. 5 to oo is given.    From the expressions (2. 5. 14, 16, 18) 

one notices that the usual Taylor expansion    for small arguments when   ?   i, 

large,  indicates the Stoner-type behavior.    This sort of argument gives the 

inequality that for   ? » 2^ (1 + f)
1/3   one obtains the short-range behavior 

and for   ? « 2^(1-?)  '      one obtains the long-range behavior.    From 

Table 3,  we had earlier obtained an estimate which is a factor -^   of what 

is expected as above.    More careful analysis shows that for   ? ~ 0. 9   the 

transition from the "long-range" to the "short-range" behavior sets in,   in 

the sense that the intermediate states tend to be disallowed for ? < 0. 9 and 
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allowed for   f > 0. 9.    This is brought out clearly when Fig. 4 is examined 

in conjunction with the lemma. 

In Figs.   5a-e    a plot of C(f)   versus   f   for various .(   but for 

several fixed   (Kö'/fy) ar« given.    These plots show some interesting feature«. 

In Fig.   5a, Kß'/cF = 0. 2 which In the Stoner limit exhibits the   P   state as 

ground state.    It is seen that the   P   state is the absolute minimum for all f. 

In Fig.   5b,  Kö'/cy = 0. 667, which in the Stoner limit shows the absolute 

minimum preciaely at f = 0.    A«   5   is decreased the curves look exactly *• 

in Fig,   5a,  showing that for finite   f ,  P is still preferred.    For  Kß'/c- = 0. 68, 

the Stoner curve shows a minimum at f = 0. 5,  i. e.,   UF is the ground state. 

This minimum moves to f = 0 quickly as   f   is decreased.    This movement 

of the minima as   |   decreases is well brought out in Figs.   5d, e.    In Fig.   5d, 

Kö'/fp = 0. 794 where the Stoner limit gives the   F   state as the absolute 

minimum.    On this plot,   5 = 6      is seen to exhibit an absolute minimum for 

some   ? / 1   ,  and for   5=2x2'     ,    Pis the ground state,   showing that 

as    f   decreases the absolute minimum   T moves to the left.    In the last min 

figure of this series,    Kd'/ep = 2   where the Stoner curve is well in the   F 

state.    As   f   decreases,  one gets UF for certain   5 ,  and for smaller   £ , 

the    P   state. 

To show these more explicitly,  a plot of   (Kö'/ep) versus   f is given 

in Fig.   2b    such that this movement of the   ? is brought out clearly.    For mm ' 

a given   (Kfl'/Cp),  as   ? is varied,  we have the minima at various magnetizations. 

Conversely,  for a given   ?min  »there is a set of optimum values of (KÖ'/cp) 
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and   f   which minimize the total energy.    This is obvious from Figs.   5a-«. 

For   5 — oo, above   KO*/*    = 0. 79 one has  F   state and below   Kß'/c- = 0. 67 

one has   P   state and between these two one has UF as ground states.    As  f 

is decreased,  the region of UF becomes smaller and smaller,  giving a higher 

and higher    (KÖ'/ey) and finally at about    f = 0. 9,  coalesce,  showing that UF 

is no   longer preferred below   f = 0. 9.    Below this,  one uses the condition 

obtained by just comparing the   F   and   P   states.    For the sake of showing 

how the Bloch limit is obtained for   | = 0,  a similar plot of  In ^or )   versus 

?   is given in Fig.   2a.    On this same figure,  a plot of the Thomas-Fermi 

screening versus   in (ar  ) is also given.     This plot never crosses the ferro- 

magnetic region for any (or  ),   showing that   F   state never occurs in   HF 

for an electron gas with Thomas-Fermi screening. 

(b)   Just for the sake of completeness we derive the expression for 

<H>/H>    in the 0verhauser SDW case.    From (2. 5. 1),   using the Overhauser 

Green's functions  (2. 3. 1) and (2. 3. 6) or evaluating   <H>   directly,   we get 
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cos  9 + —w  
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qj 
nFK(a» + <H> _ r A_ f7a2 

ß J    (2»r     IP™" o 
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a
+-zsr- C08 V nF<w.<a>)j - 

" 4II ^^ ^<a-a') |(co.2öa„r(u+(a)) ♦ 

+ 8in2danF(uJa)))(co82fl    nF(w+{a'))+ «In2« .n^CyJq'))) + 

+ (8in2ÖanF(W+(a))+coa2d  nF(ü_(a))){8in2ö   nF(ü+(a
,))+co82ö   nj-fuJa'))) + 

/gt I {a) «I t ^a') 
+ VinTa^tFä7 cos V'^a003^3"^'^^^-"*^-^» 

{nF(u+(a'))-nF(u (£•)))> (2. 5. 26) 

If,   as Overhauser [18] did,   only the   tJ+(q)   branch is assumed to be occupied 

and further   g| I  = gl | = g,   we  recover his expression.     Incidentally,   this 

generalizes Overhauser's  results to finite temperatures.     Treating   9      as 

a variational parameter,   one  recovers back the condition on tan 20      which 

can be obtained from (2. 3. 8) also.     Moreover,   this generalizes Overhauser's 

results for intermediate magnetizations whereas Overhauser's work concerned 

only the paramagnetic state. 

Summarizing,   we have in this chapter discussed-single particle 

states and the ground states of a polarized electron gas.     The discussion 
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include« some formal results about SDW (symmetry breaking solutions) 

and electrons in a periodic potential (Bloch electrons).    It is shown that the 

exchange energy in general is a very complicated function of    f2 ,  and not 

just a power series in   f2 .    The main results are displayed in Figs.   2a, b 

which give the regions of magnetisations for optimum values of the coupling 

strengths and screening which minimise the total energy of the system.    The 

use of the Thomas-Fermi screening is valid under certain approximations 

for a Coulomb gas,  and implies a definite relationship between the screening 

and   (ar8 ) .    From this it is shown that in HF the electron gas can never 

become ferromagnetic.    All the calculations reported here are within the HF 

approximation and for zero temperature,  though the formalism contains 

results for finite temperatures also. 



III.  INDIVIDUAL PARTICLE AND COLLECTIVE EXCITATION OF THE SYSTEM 

t 
1.    General Introduction 

*&< In order to study the collective excitations of the system one needs to 

study the characteristic correlation functions.    The formalism developed in the 

last chapter can be used for this purpose.    In this section the necessary equations 

are derived for the correlation functions of interest.    In view of the complications 

drastic approximations are made to solve them.    These will be discussed in the 

next two sections. 

The first-order response of a system to a given external perturbation 

can be expressed in terms of retarded correlation functions.    There is a locus 

of poles in these functions in the frequency-momentum plane.    This locus gives 

a relation between the frequency and the wave vector corresponding to the 

forcing field.    These are the bound states or the collective states of the medium 

indicating resonant response to the external field.    There is a second frequency- 

wave vector relationship which is not a pole structure in the correlation function 

but which is a branch singularity.     The branch singularities correspond to the 

scattering states of the system.     In general,   the poles of the correlation 

function have a real and an imaginary part.     The locus in the frequency-wave 

vector plane which makes this imaginary part non  zoro gives a locus of a 

complex pole in this plane,   showing that the collective part has a finite life- 

time.    When this imaginary part is zero one has a real pole which is the bound 

state excitation which occurs only for a certain range of the wave vector in a 

certain approximation.    These may be stated physically as follows.    In looking 

III-l 
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for the collective excitations normally examined (and also those studied here), 

one looks for coherent motion of a particle-hole pair with certain characteristics, 

like their spin, wave vector and energy.    The bound state corresponds to this 

coherent motion.    Beyond a certain value of the wave vector (difference In the 

wave vectors of the pair) which is the wave vector of the collective mode,  this 

coherence is lost and one no longer has a collective mode.    This is the beginning 

of the scattering states of the system.    Thus,  the nature of the singularities in 

the retarded correlation functions tells us about the nature of the excitations 

in the medium.    Here,  in particular,  the responses of the system to three 

kinds of external fields are studied:    (1)   oscillating fields giving rise to the 

fluctuations in the charge density of the medium thus yielding the density-density 

oscillations;   these may also bethought  of as a singlet state oscillation of the 

particle-hole pair;   (2) oscillations of the z component of spin density by means 

of an external magnetic field in the z direction fluctuating the z component of 

spin density so as to create spin density oscillations without the attendant flipping 

of spin;   these are the triplet oscillations of the pair with their projection zero; 

and (3) fields which fluctuate the transverse components of spin density by means of 

an external magnetic field in the other transverse direction giving rise to spin 

flip oscillations but without the fluctuations in the total charge density,   thus 

leading to spin-wave type collective modes.    These are the triplet state 

oscillations of the pair whose projection is unity.     Instead of examining the 

retarded correlation functions themselves directly,  a set of time-ordered 
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functions which are related to these (in the same way as in Chapter 2 concerning 

the single particlestatc^Xwill be studied.    This is done because the variational 

derivative technique can be used to advantage. 

Define 

Cjd)- ajd) -  <(rl>   (i = 0f I, 2, 3) (3.1.1) 

where   ^   is the operator   tr(^    T^) f    if/   is taken to be a   1x2   column 

matrix,  and   <»£>   i« the usual average density as in (2. 1. 21a, b),  where   T. 

stands for the Pauli matrices and   T     for unit matrix.    Thus,    «r   ( 1 ) = excess o o 
particle density over the mean particle density, p( 1 ) ,  «r. ( 1) = excess spin 

density over its mean.    With these definitions the following correlation 

, functions are computed: 

X^dl') = 4-<T{?.(l) a.(l'))> 

(i. j = 0, +, -, 3)   . (3. 1.2) 

The time ordering here corresponds to the Bose operators in contrast to 

Chapter II.     For i = j = 0,   (X       =   y   ) this function is related to the dielectric oo o 

constant,    C j    for i = j = 3,   it is  related to the longitudinal spin susceptibility, 

X33 *    for i = 1 d),  j = 2(-) ,   it is related to the transverse susceptibility 

X + _ .    (1,2 now refer to the spherical components ( (<r.  + i <r,)/2) instead of 

Cartesian components as in Chaper II ). 

As in Chapter II,  Section 1,  a set of formal relationships can be 

derived just on the basis of the definitions (3. 1. 2).    These are given in 

Appendix   A . 
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To relate the functions (3. 1.2) to the variational derivatives with respect 

to external fields,  let us first note that the fields  Ui   and Ui   introduced in the 

last chapter may be combined to give the generators of total density and the   z 

component of spin density by forming the following combinations: 

U»   = Uo + U3   and   U.   = Uo - Uj (3. I. 4) 

so that (2. 1. 22) may now be written as 

where 

and 

H-   -   j*  d3i [ü0(rt) n(rt) + U3(rt) (TJ (rt)] 

n(rt) =   rf (rt) ^|(rt) + tf (rt) ^j(rt) 

^(rt) = 4/^  (rt) ^|(rt) - ^[ (rt) ^ (rt) 

(3.1.5) 

In view of this we have 

Ö 5 
"STfj"      "5 u i " SIT"'     TUT " yÜ i        TTuJ 

To generate   a, (rt) = \f/ .    (rt) i//i (rt) 

and 

(r_(rt) = i//|" (rt) l//| (rt) 

one introduces the following additional Hamiltonian 

H" =  \  d3r [U+ (rt) (r_ (rt) + U_ (rt) (r+ (rt)] (3. 1.6) 

The fields   (U    U    U,),  when suitably chosen,  are the components of a space- 

and time-dependent external magnetic field.     The equation for the single particle 
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Green's function in the presence of all these fields may now be written down as 

in the last chapter (here no new notation is introduced to distinguish this from 

the old one as this does not cause any confusion) corresponding to (2. 2. 28) 

i       .    V 

+ i J d4rV(l-T) [tr G(TT+)1 ö(4) (l-P) 

+ ifd4T   d4T'^/(l-T)G(ir)ro{ri'; T) (3.1.7) 

To make use of the variational derivative technique,   the expressions (3. I. 2) 

will now be recast in terms of suitable derivatives.    For, 

< <r. (1) > = - i [tr TjC (11+)]   (i = 0,   I,   2,   3) 

where    1,   2,   3   now refer to spherical components (+,   -,   3).    So one has, 

.     5u
g
(2)     [tr TiG(lI+)]= <T(cr.(l)a.{2))> - < ai(l)><«r.(2)> 

= <T((ff.(l)-<ai(l)>) (cr^Z)  - <aj(2)>))> 

= <T((?.(l)£.(2)» 

Also 

ÖG(ir ) 

ö U. (2) 
J 

j* d4Td4JG{).T) F. (23; 2) G(Tl(t1
+) ) (3.1.9) 
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rram (2. 1. 25),  and^deflning 

^(12; 3) =  6C'l{l2)/ölJ.{3) 

The    F.     are matrices like      F    in the last chapter.      Hence 
J 0 

(3. 1.10) 

XydZ)-! Jd^d^rtr^T.GdDrjCTIj.DGdUtj*)))]     .  (3.1.11) 

The equations for   T.   can now be written down with the help of (3. 1. 7) 

1^(12; 3) = -Tj ö^ (1-2) ö(4){l-3)- 

- i Jd4Td4Id47^(l-T)[tr{G(TI)r.(2I; 3)G(5T(tr
+))}lö{4)(l.2)- 

. if d4rd4T' d42d43^(i-T) cuDr.dJi 3) G(jr')ro(r2; T) + 

r                                                   OF  (T2; D 
+ i J   d4l d^i'^il-l) G{I1')  —Jjj-^j^  (3.1.12) 

These equations are exact.    From (3. 1.12) one can derive the equation for 

OF /ÖU     and so on.    These form a set of linear equations for   F^ , F, , F- 

except that these are all coupled to   F     which satisfies a nonlinear equation. 

The second term in (3. 1.12) has an obvious interpretation and lets us introduce 

7(12) = i j*d4rd4?[tr[G(lT)F.(TI; 2) GdMt^))]   ] (3.1.13) 

This term arises from the Hartree term in G     ,  the next to last term in 

(3. 1. 7),  and has,   therefore,   the interpretation that it is the response of the 

total particle density to the component   U.   of the external field 
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Tl(12) = ^-<T(p(l)^l(2))> . (3.1.14) 

. The various terms in (3. 1. 12) may b« interpreted as follows.    The 

first term is the lowest order HF term since in the last chapter this term was 

^seen to give the.conventional HF single particle excitations.    The second term 

is due to direct scattering processes involving fluctuations in the Hartree self 

energy;    the third term arises from the exchange scattering processes and the 

last term includes all the higher-order vertex corrections coming from various 

other scattering processes.    The Eq.  (3. 1. 12) in its full generality is very 

complicated and simplifying approximations have to be made.    These will be 

discussed in the next section as well as the results obtained therefrom. 

2.    Approximations (Spatially Uniform Solutions) 

We now consider the free gaa where the single particle potential is 

taken to be zero.    Then we have a spatially uniform system where the Green's 

function   0(11')   depends only on the difference   (l-l1)   and the functions 

F. ( I 2 ; 3)   depend only on (1-2) and (1-3).    Before proceeding further,   we note 

that the last term in (3. 1.12) is of order W     as can be seen by forming the 

equation for    OF /öU.  .    We,   therefore,   drop this term in all our calculations. 

This amounts to neglecting all vertex corrections.    (See,  for example, 

Rajagopal [45] for a discussion of these equations in the extended RPA scheme 

using the above formalism.)    We now take the Fourier transform of this using 

(2, 2. 1) and (2. 5. 4) where 4-D notation is used for convenience. 
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j^TlC-älG rl(kiq) = - TJ -,2/(q)7i(q) - i jW^oi^G(q+q)•• 

rl(5;q)G(q)ro(k;q-k)-Air (3.2.1) 

(q)   is just the Fourier transform of (3. I. 14) and has the form 

r (q) ' i   f -^-H  [»' f G(q + q) r(q; q) G{q)} ] 
1 J    (25)* L 

(3.2.2) 

From the structure of (3. 2. 1),  following a suggestion used in another context 

by Nambu [43] ,  an algebraic transformation may be made: 

r.(k; q) = A^k; q) +2/(q) 7i(q)A0(k; q) (3.2.3) 

where now 

Ajk; q) =» -r. - 

. i  I    i_^ V(k-q) G(q + q) A^q; q) G(q)ro(k; q-k) (3.2.4) 
(2») 

In view of (3. 2. 3),   one has the form 

.4- 
(q)^   {^T   [trfG(q + q)   A- ( q J q ) G ( q )] ]/C( q ) 1 J uvy L 

(3.2.5) 

äth 

e(q)= i 

.4- 
iV{q)  {   -^T [tr (G(q + q) Ao(q, q) G(q)]  1 

J    (2jr)4 l 

(3.2.6) 
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But   Y   (q)   is the Fourier transform of the density correlation function, and 

so one has the following general relationship between   C(q)   and   7   (q)   which 

is obtained from their definitions (3. 2. 5, 6) : 

1 

• Comparing with (2. 50) of Pines [32] (page 41),  one thus sees that   C (q)   may 

be identified with a propagating dielectric constant of the medium.    In view of 

the definition (3. 2. 6),  the equation for    F     (   cf.  (3. 2, 3)) may be rewritten: 

ro(k; q) = Ao(k; q)/6(q) (3.2.8) 

and the equation (3. 2. 4) for   A. : 

AjU; q) = - Tj - 

.       . - ij   -^^   ^~^f-  G(q + q)A.(qi  q)G(q)Ao(k;  5-k)    .(3.2.9^ 
(2ir) 

Then one finally arrives at 

iV 
Zjr) 

(2jr) 

X33 = i  j*        d   \     [tr^T3G(q + q-) A 3 ( q";   q) dq)}  1 + 

+ i ^(q) 73(q^-^-^   [tr/T3G(q+q) Ao(q; q) G(q)}   ] (3.2.10) 

X+.  =   ^ -^-V   [tr{Tl  G(q+q) ^2^' ^^^ (27r) 

.4- 
+ il/(q) 7?(q)  f -^-V   [tr (T1G(q-rq) Ao (q; q) G(q)\  ] .       (3.2. 11) 
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In this technique the dielectric screening of the exchange term,  namely in the 

second term of (3. 2. 9), comes about quite naturally without any ad hoc 

assumptions.    Moreover,  a perturbative type of solution of the    A .   equation In 

powers of the interaction strength gives the results of the extended RPA [45] . 

We will now present four cases,  three of which depend on further simplifying 

approximations of the equations (3. 2. 9). 

To motivate the approximations,  let us examine how the terms in 

(3. 2. 9) came   about.    To this end,  the expression (2. 5. 5) for G'   (k)   with 

all the   U, = 0 , must be seen.    This contains a term involving   V   ,  or 

equivalently   A It is this which couples the various   F.    to   V    as well as o r to 

making the equation for   V     nonlinear.    However,   the   F     equation is 

inhomogeneous.    It was earlier seen that taking the inhomogeneous term for 

F     to be the solution gives the HF approximation for   G .    So,   if the equations 

for   F.    or equivalently for   A.   are derived from   G,.— .   one will arrive at i ^ ' i HF ' 

equations of the form (3. 2. 1),   but in the last term,   V     appearing at the end 

is  set equal to    -1    thus 

FUiq)  =   -  Tj  -2/(q)    ^(q) +      . 

.4- 
+ if   -^-3-42/(k-q) G(q + q)r (q; q) G(q) . 

J    UTT)4 i 
(3. 2. 12) 

And correspondingly 

A.(k; q) =  - T. + 

.4- 
+ i  f--H^(k-q) G{q + q)    A.{q;q)G(q). (3.2.13) 
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These equations then constitute the usual  RPA equations but include     lowest 

• i order exchange terms and must be solved to arrive at the various response 

functions.    Again,  the equation for   A.   as in (3. 2. 13) cannot be solved'completely, 

but this time for a different reason.      The lowest order RPA consists in taking the 

« inhomogeneous term to be the solution for   A . .    But this is the lowest order 
i l 

approximation when ^/(k)   depends on   k .    On the other extreme,  if ^/(k) 

. is chosen to be independent of  k ,  which is true for zero range interactions, 

, then further,if   G's   are assumed tu be diagonal,  (3. 2. 3) can be uolved trivially 

for   A. .    This then is the second case where some physically nontrivial 

results are obtained.    In this way of treating the problem,   it is thus seen that 

the results for the Coulomb gas and the zero range gas come about quite 

trivially.    These will be discussed in the next two subsections.    We henceforth 

assume  the   G's   to be diagonal. 

There is another possibility in the present context.     This is to consider 

the fuH set of equations for     A.       and   G"      together.    We assume   A     = -1 

to start with.     This is substituted in the expression for   G(q)   which now 

becomes the RPA dielectric constant.     This,   therefore,   screens the exchange 

term in   G The resulting equations for   A.  (i= 1 , 2, 3   )   are now independent 

of   A       but are of the form (3. 2. 13) where in the last term,   the interaction 

potential is screened by   Cop*   •    This new set will be discussed to justify 

the use of the Yukawa potential in this problem.     This is discussed as Case (c). 

After describing the&c results,   in the next section,   the results are extended 

to Bloch electrons,   which form  the   fourth case of the present discussion. 
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It may be mentioned in passing that the same method was employed by the author 

[46] to derive quite trivially the dielectric constant of an electron gas in the 

presence of an external magnetic field. 

A.    Coulomb Gas 

Here V (q)   =    _—     and only the most trivial approximations can 
q 

be made to give closed form results.    Here the solutions to (3. 2. 13) ar« 

taken to be 

I 

Then 

A/(k;q)   = 

CjU) = 1 +^(q) {Al+ Bj) 

TJU)  =   - 

Y/M  = o 

T2
l(q)    = 

73  (q) = 

X3*(q) = 

{Al+ Bj) 

(Aj-B^ 

1  +^(q) (Aj + Bj) 

AJ+ Bj + ^(q) Aj Bj 

1  +   ^lq) (AJ+ Bj) 

X+
l. (q)-    -C, 

(3.2. 14) 

(3.2. 15a) 

(3. 2. 15b) 

(3. 2. 15c) 

(3. 2. i5d) 

(3. 2. 15e) 

(3. 2. 15£) 

(3.2. 15g) 
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Here 

III-13 

A' = '^^ ^t'"*«»0!! <'' 

1      J uo 
B.   = G||   (q+q) G|| (q) 

.4- 
Cl = li"^Gu<<'+;,ctl<;, 

(3.2. 16a) 

(3. 2. 16b) 

(3.2. 16c) 

Integrals of the type (3. 2. 16a, b, c) with the same general structure will appear in the 

future also.    Using a method given in KB,  these can be evaluated in general in 

the form: 

da   f di^ r dJL   Att (a+a; ü)A|t (a;ü) 
2*   J     2t 

: r u^ c duL r .du. 
UJT) 

.3- 

u - u + u 

da    r du f du    AiiU+qiw)A||<aj w) 
u - u + U J {Zir)*   J iv   J  Z* 

c{ ^r^l    r^r d5   Au<a+ä; ")AttJä^> 
Uv) ZV    ^    Zv u -  w + U) 

(nf(ü)-nF(u)) 

(3. 2.17a) 

(nF(i3)-nF(w)) 

(3. 2. 17b) 

(nF((j)-np((j)) 

(3. 2   17c) 

The weight functions   A     ,    are as given in Chapter II.     The HF approximation 

gives 

Aj| (a<j) = 2)rö(u,-e|HF(a); A;| (aw)= 2ffö (" -c"F(q))    .(3.2. is) 

These in (3. 2. 17) give the combination 
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of Fermi   functions.     We take this to be ' 

[n+<kF<r-|a+äl)-n+(kF<rl - lähJ 

for T = 0oK as in (2, 5. 8).    Note that these integrals in general have a principal 

part and a delta function part or in other words they have real and imaginary 

parts.    For the present case: 

with 

AI -I (2ff)3 

BI -I U.)3 

C
I -I 

d'i 

Uir)3 

I 
(q) = q  /2m - 

-(0 

i    -        i - "r 
"F*^ (a+a*_nFtu+ ^^ 

"F^. (a+i^'nF^w- ^^ 
u - u_ (a+i) + w- ti) 

nF(w_ (a+a^'nF^u+ ^3^ 

(3. 2. 19*) 

(3. 2. 19b) 

(3.2.19c) 

1      I      2        U       2   A   I       I     q'kFg 

r <r 
(3. 2. 20) 

Here   kp. +   corresponds to   k_|   ;    -   to   kpi 

The expression for   C.Cq)   derived under these approximations 

corresponds to the dielectric constant derived by various authors within 

the RPA (see Pines [32] ) in the unpolarized limit.    We will,   therefore,   call 

this plasma RPA. 
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One notices from the form of the Eq.  (3. 2. 13) and the solution assumed 

(3. 2. 14) that the exchange terms are entirely neglected in this plasma RPA. 

Because of this the polarized system behaves as though one had just two non- 

interacting plasmas and the medium shows no spin wave mode in   X.    . 

However,  on taking the exchange terms into account by examining the   F, 

equation in more detail,  as.will be done later,  spin waves do result.    (As a 

check on the calculations,  if the system were unpolarized,  A = B = C,  the above 

results reduce to the known results found in the literature.)    In this approximation, 

Yj (<l) = ^2^) = 0 »  thi8 implies that there are no density fluctuations caused 

by the fluctuations of the transverse components of the internal polarization. 

However,    y- / 0 ,   showing that the longitudinal component does affect the 

density.    These results are reasonable on physical grounds also.    In the 

complete   F   state,   B   - Q,   (I   state is empty) there is still a plasma typ« 

excitation found in both the density response and in   X-»->.   (The complete F state 

corresponds to an electron gas with one spin state occupied;    two particles 

cannot come to the same spot Z-ltfy by dint of the Pauli principle.    This is 

significant as will be seen in case (B).) 

As a further crude approximation,   to illustrate the  results obtained so 

far,   if the exchange terms in (3. 2. 20) are expanded for small   q ,  one obtains 

an effective quadratic dispersion for the single particle energies with some 

effective masses: 

->   2. 
1 F 

u^ = ^ /^o- JT-5-    with -L_=   f_L+_^ J (3.2.21) 
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Thi« i«, only to give a heuristic argument.    A more useful but perhaps irrelevant 

approximation is just to assume a quadratic dispersion law for the two states with 

effective masses, but without the significance of (3. 2. 21).    In any case, one has j 

plasma oscillations in the medium, appearing in the density response,     y   , 

73(q), and in   *•• .    In the   P   state, the plasma mode appears only in 

We now derive the Thomas-Fermi screening in the polarized   medium, 

using an effective mass approximation,  for the        and   \   bands.    For this we 

need to study   6(3, w = 0) at T = 0OK   for   q ~ 0 .    We then have 

e{qJ w = 0)=l + ^|- 

+ 2mi 
r d3q   VkFi -k+äl)-^F| - läf)   ^ . 

Evaluating the integrals for small   q ,   one has 

P( 0^      .   ,  47re2    HkFJ ,    "M^FJ^ 

= 1 + ?2
TF{i:)kF

2/q
2 

where 



l'.WHli" '       : ■   i.iiui«» ■juim^iijj,     ■;■■■■ Ml.-    ; '  r ^ : i   ■ „M^mWJf'  

' . 
ARPA-11 III-17 

Hera   m     are taken to be arbitrary.    Using  zm   ■ mi   ■ m, we have plotted In 

Fig.   2a   f ( 5 = 0 ,  1) versus   in (ar ) to show where the Thomas-Fermi screening 

lies on the phase plot of HF ground states for the Yukawa potential.    This.shows 

that ferromagnetlsm does not occur In HF for Thomas-Fermi   screening. 

B.    Zero-Range Gas (Stoner model) 

Here 2/(q) = 2/ = a constant.    In this case,  the equations for   A,   cam 

all be solved trivially if the   G's   are diagonal.    These are: 

A"(k;q)   = 

II 

l/d-l/Ajj) 

A!   (k; q) = - / (l/d-FDjj)) 

II 
A2"(k; q) = - T' (l/Cl-e/Cjj)) 

A "(k; q) 

1/(1-2/Aj) 

.4- 

Then 

II.    , 1 

i/d 

0 

-l/(l-'2/BI) 

where   DJJ = i \  —^J-Gj | ( q +q) G| | ( q)    . 

AII+BII-22/AIlBII 

(1  -^AJJ) (l-'Z/Bn) 

(3. ?• 23a) 

(3. 2. 23b) 

(3.2.23c) 

(3.2. 23d) 

(3. 2. 24a) 
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Cu(q) = + 

and hence 

111-18 

1'VZAIIBU_      1 
(l-^AjjXl-^Bjj) 

|_1 -^Z AII Bj, J 

yl    (q)   =   0 

"/    » A r>   (q) = o 

U/   % 73    (q)   = 
^11 - BII    1 

l.^AIIBII       J 

A33   (q) = -    zrj-—■  

w" = q2/2m - -^ N^(l+   f) 

= q  /2m - Kfi' ( 1 + ?)   in Stoner's notation 

(3. 2. 24b) 

(3. 2. 24a*) 

(3. 2. 24c) 

(3. 2. 24d) 

(3. 2. 24e) 

(3. 2. 24f) 

(3.2.24g) 

(3.2.25) 

As with the results of case (A) ,  yo     ,   T3
11 f   and    Xj"   show the same 

pole structure.    However,  X+_     contains a pole also,   showing the possibility 

of spin-wave modes in the medium without additional approximations.    In the 

paramagnetic limit,  An = BJJ = CJJ ;  7^   contains a pole while    X   "   ha« 

none,  for repulsive potential.    In this limit,  the results correspond to those 
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of Gottfried and Pieman [30] and Wolff [31J,  re.pectivaly.    If one put.^(q) =tJ 

in the result, of ca.e (A), in the   P   state, one finds it necessary to take 

^(q) ~ a//2   to find results in agreement with those of the present section. 

This factor of  -J-   appears because the exchange contributions were neglected 

in case (A) and were taken into account here.    Tor the same reason, the 

.«bstitution ^/(q) = ?/   in case (A) docs not glve the -ame ^^^ ^^ ^ 

In the polarised case.    The appearance of spin waves as a pole in   x "    is 

entirely due to exchange.    The above results hav« aUo been derived by Kubo 

etal.  [26J and Baym [27].    As in (A) .  Tj - T2 • 0   for the same reason. 

The integrals can all be formally reduced to quadratures for finite   T, 

and to closed expressions for T = 0oK ,    thus (only principal parts are here 

given): 

AII = 
m 

B II 

^11 

4»   q 

m 
4» 2q 

u ..c.i~*-/-> . /_ »2 t  . '2 /, ..     2" 
U   -(q   Amtqq'/m)* 

j   dq1 q- nF(W_n(q«)) In 

m 
1 

4rr   q I--'<■■ V-.V) *> ^ 

^-^/^-qq'/m)2 

u   -(q   /Zmfqq'/m) 

rT.     2 
]\ 

/2m-qq'/m 
q   /2m fqq'/m 

II 
nF(u+^')) ^ g-q   /2m-qq'/m 

fi- q  ^m^qq'/m 

J 

ß= (u- 2X0^). (3  2. 26) 
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For T = 0 K ,  these integrals can be carried out and are: 

m" 
'II /m2 + 5«7" (;2<, ^ 

+ B»+q2/2n.)2-q2k/(/nl2l   »> 
w + q /Zm + qkpi /m 

W+q /2m-qkpi /m 

[(u   -q  /2m)    -q k 2/ 2,, rM-q2/2mtqkFt/m R 
Fi /m  J   In     j- «--       > 
^ Ijl.t'Am.qk,!^    JJ 

B 
11 

'11 

(same as above with   k..!   replaced by   k_i ) 

3 m 

8r    q 
|-^ [(ß-q2/2m)kF| -{fi+q2/2m)krj)   + 

+ [(fi+q2/2m)2-q2k2j /m2] in 

-[(fi-q2/2m)2- q2k2|/m2]    In 

fl+q /2m+qk_i/m 

fi+ q  /2m - qkpi /m 

Ji-q  /2m + qk_*/m 

_ß-q   /2m-qkF|/m     J 

(3.2.27) 

These principal parts are evaluated here so that when the imaginary parts of 

these integrals vanish (which they do for a certain range of the   q   vector 

specified by the logarithmic singularities in (3. 2. 27)),   they  directly give the 

information concerning the real poles in the u-plane.     These real poles in 

the correlation function correspond to resonant bound states.    When the 

imaginary parts of these integrals are finite,   the reality of   u   is lost;    the 

bound states have finite lifetimes in these approximations.    The physical 

mechanism for these lifetimes has already been outlined in Chapter I,   and 

will not be repeated here. 

1 
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For small   q ,  these expressions can be further simplified by making 

approximate evaluations: 

A.. ~_q Ni /mu   ;    Bj. *** -q Ni /mw   • (3. 2. 28) 

The evaluation of   C      for this limit is a little more subtle because of the 

presence of   2K0't.    Writing ft= (<j -ZKÖ'?) it is here given up to order 

(q /fi ) the reason for which becomes evident when the spin-wave pole is 

evaluated. 

The poles of   7       ,  73     ,  and    X33    are of the form 

1  " 2/2 AJJ BJJ = 0 =  1  - t/2 q4 Nj N| /mV 

or 
--^M.   M.  X^A 

«=     I f-M q     . (32.30) 
\     m / 

There is thus a sound mode in the medium traveling with a velocity given by 

(VN/im)1^!-?2)1/4    or   vF(2M.')'/2   O-f2)1/4 

If 

(vF   is the Fermi velocity kF/m).    For the    P   state,     Kö'/cp = 2/3 »   thi8 

is   v,-.//?    which is the usual result.    It must be remarked here that in the 

F   state,   B.. - 0 (only  f    states are occupied) so that     C  .   has no zeros    or 

y     has no poles showing that there is no sound mode propagation.    However, 
o 

the spin waves are seen to exist in this state.    Note that a plasma mode did 

exist In the    F   state in the Coulomb case,   in (A) .    This  result will be 
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evident when the situation is visualized in some detail.    In the case of zero- 

range interaction,  the particles interact only when they are very close to each 

other.    In the   F   state all the particles have up spin and so the Pauli principle 

comes into play and precludes the interactions entirely.    (The sound mode is 

«I     found in   7    , which.as was pointed out earlier, may be thought of as singlet 

state of the pair;  in the present instance,     no singlet state can be formed. 

This is another reason for not finding a sound mode in the medium.)    The 

longitudinal susceptibility also does not show any reuonanl reuponse (il did 

in the Coulomb case in (A)) because the spins are already lined up and no 

longitudinal field can fluctuate it any further because the interactions are of 

zero range.    However,   the transverse susceptibility shows the spin-wave 

mode as must be the case and as is reasonable otherwise.    Note in this case. 

II II II C--    = - A.,   which can be expected because   N = <r,   for, 

N = N»   + Mi    = Ni   (F state) and   (r3 = Ni - Ni    = N»   (F state). 

The spin-wave mode will now be discussed in some detail.    This 

requires the evaluation of the zeros    of (1  - ^'C..) in the limit of small   q 

and small   u ,   such that terms of order   (uq  )   and   (u  ) are neglected.     Then 

one has 

"sw ~    Zm^ik^'/cTT 
Kg»       «1 ^-i:)^3 - (1 - K)5^) (3.2.31) 
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The -stability of the spin-wave mode may be ascertained by imposing the 
- 

condition that its frequency be positive.    This criterion gives 

K0'/er   >   [d + C)5/3 - (1 - f)5/3 1/5?     . (3. 2. 32) 

For the fully ferromagnetic case this is 

KÖ'Ay   >   25/3/5~ 0.635 (3.2.33) 

From Chapter II,  the ground state is an F state if 

K0'/cr >   2'1/3~ 0.794 (3.2.34) 

and the ground state is UF if     Kö'/cj-  > 2/3 ^ 0. 667.     Thus,  whenever the 

ground state is either UF or F the spin waves arc stable also.     This v/as first 

noticed    by Herring [23] and again recently by Fukuda [12] . 

There is a second type of instability of spin waves.    Here the .spin 

waves merge with the scattering states thus acquiring  a finite lifetime   even 

in RPA.     This happens only beyond a certain maximum wave vector,   Q^ 

of the spin wave,   becaure    X ,       will then have complex poles.     The imaginary 

part of Cf, begins to appear first for   q and   tJcu,   given by ii max öw 

"SW = ^max/2m + 2KÖ^ - ^maxM ^        . (3- 2- 35) 

Calling   q = Q k„ ,   one arrives at a transcendental equation for B   nmax max    F ' ^ 

Q ,   obtained by putting {3. 2. 35) in the spin wave dispersion law 

1  = ^CJJ (3. 2. 27): 
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Q =| (KÖ'/t^) max     8 *       ' CF 

+ f (Qmax- <1 + f>l/3)2- «I - C)2/31 A» 

in-24 

J2(l + f)2/3+2(l-?)l/3(^ 

Q^«-(1 + ?)1/3-(1-r)1/3 

max .(l+C)l/3) + 

max 

Q     -(i + r)1/3+(i -r)I/3 
max   %       »' »       »» 11 

(3.2.26) 

This has to be solved numerically.    This numerical solution is displayed in 

Fig.   6.    From (3. 2. 26) and from the schematic diagram in Fig.   6,  it is seen 

that   Qmax has an upper bound at {1 + C)1'3-{1 -?)1'3.    In this figure, 

Kö'/fp   is taken to be an independent parameter not determined by the ground 

state conditions.    The only relevant parameter of course is the one pertaining 

to the ground state and the corresponding curve is shown in Fig.   6 as a broken- 

line curve.    For    C = 1,  the F state,   this gives an exact answer,   namely 

1/3 Q - 3/2 (K0•/,?„) 2 max        ' '   F (3.2.27) 

For such a   Q ,   the spin-wave frequency is 
r T >.»v * * ' max 

(Jew  (Q ktr) oW       max    F 
/K0'\    9 1/3 Kö' 

T • 
,2/3 

(3. 2.28) 

The spin-wave stability criterion applied to this shows that  tj5,., (Q k,,) 
Sw       max    F 

is stable only if   Kfl'/ci.- > 0.71.     This implies that for stable    F    states for 

which K6</e     > 0. 794   the spin waves are stable up to   Q but beyond 
* r max ' 

Qmax   they are unstable,   being scattered into the individual particle excitations, 

even though the infiniteFimal spin  wave stability criterion permits spin-waves 

to persist.     If we take the stable    F    state for whi'h   Kö'/c^ =    2~1'3 

/ "F 

(3. 2. 28) gives the spin waves up to   Q = 0.945   and its enerey is 
max 

w. SW < w) = 2' rF/l6   o 

max 

» /16 . . i 



- '-*- '•-■'■"■'■y1^ . ■^r""i1 ••^ " " ■ ' '  

/ 

1.0 i r r T 1 1 7T 1 r 

C«0.1 5=0.5 
C«0.3. 

fldi^),«?»^ 

SCATTERING   OF   SPINWAVE  INTO 
INDIVIDUAL   PART'CLE    STATES 

SCHEMATIC   DESCRIPTION   OF  THE 
EXISTENCE  OF A MAXIMUM  q DUE TO 
SPINWAVE   SCATTERING 

UPPERBOUND   ON qMAX  IS 

W=  (kM-kF|) 

_l I I \ I L 
0.8 1.0 1.2 

_L_ 
1.4 

'max 
FIG.  6    Qmax   vs   Kö'/ep    FOR VARIOUS   C   'N   THE    STONER  MODEL. 

DOTTE0-LIN£   CURVE   REFERS  TO KÖ'AF   CONSISTENT WITH 
THAT   EVALUATED   FOR   THE  GROUND   STATE   FOR VARIOUS C- 
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It must be mentioned that using an approximate method for evaluating 

the coefficient of   q    for   usw.      Herring [23],   Thompson [24] ,   and Fukuda [12] 

4 had each obtained the same coefficient as given here for the   F   state. 

Thompson [24] had also derived a value of  Q for the   F   state,  in agreement 

4 with that given here.    Baym [27] had only estimated this   (3 for    f < < 1 

and arrived at a value of   C^^ ■ 2" '    (KÖ'Aj-)? , which, as expected,  is 

smaller than that for the   F   state.    The schematic diagram of how   Q 0 max 

comes about is given in Fig.   la as well as Fig.   6 which has been explained 

already.    In this connection,  an aspect of finite temperatures must be 

mentioned.    For this case,  the integrals   A,   B,   C   all acquire finite imaginary 

parts and,  hence,   the collective modes or,   in particular,   the spin-wave mode, 

will be slightly damped.    Physically this is reasonable for,  at finite temperatures, 

particle-particle scatterings occurring into empty states below the top of the 

Fermi distribution are more frequent and these tend to destroy the coherence 

of the bound state. 

In the light of these  results,   one may remark on the nature of the 

difficulty in computing the total magnetization of the system.     We have two 

relations for calculating the magnetization: 

<(r3> =  - i [tr Tj G(ll+) ] 

and 

<<r3(l)> ö(3)(l-2) = <^'[<r+(l),   a_(2)]_> 

at equal times.    The direct evaluation of   <(r,>   from the single particle 

Green's function in the interacting system is very hard and so may be used 

only for very approximate calculations at high temperatures where the 

H 
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interactions do not contribute to spin waves.    But at very low temperatures, 

the correlations are important and one may use the second relation which can 

be computed to a much higher accuracy than   G .    It is not clear at the present 

time how these two have to be reconciled to arrive at the correct evaluation 

of the magnetization valid at all temperatures.    It is clearly beset with a 

considerable difficulty of self-consistency. 

In the next section we will discuss the existence of spin waves in a 

Yukawa gas.    This does not follow as directly from the equations as for the 

zero-range gas.    One needs to resort to certain transformations of the given 

equations. 

C.    Yukawa Gas 

Let us examine the Eq.   (3. 2. 1) 

^(Mq) =  - r.l -V{q)  ^(q) - 

^JTS^"    ^^T   G^>ri^^G(q)A0(k;q-k)      (3.2.1-) 
Kff) b (q - k) " 

where we have used   T    ^ A   /C .    In this we take   A     = -1.   so that o o o 

C = ^RPA '  which w^en evaluated for  u = 0   and for small wave vector« 

gives    CRpA ~ 1 + kTF/k   ;    kTF   is the usual Thomas-Fermi screening. 

Hence   f/Z   has the appearance of a Yukawa potential.     Thus,   the Yukawa 

potential can be used consistently with the ground-state properties in 

examining the collective excitations.    In case (A),   if exchange is taken 

into account by an extended RPA of the type suggested earlier,  it shifts the 
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pole and also gives a finite lifetime to the collective states.    This is as 

expected since taking into account more interactions would tend to degenerate 

the. coherence of the bound state.    The use of "plasma" RPA with a Yukawa 

potential, however, gives results very similar to those in case (A) - a plasma 

pole or a zero sound mode   depending on whether the screening is small or 

large,the transition being gradual.    But spin waves will not appear in this 

approximation.    A more careful calculation involving the exchange contributions 

is needed to derive spin waves.    The Spin-wave problem is now examined here 

in detail. 

To study the »pin waves, we investigate the equation for   F.   and only 

the component (I", )i i   in this equation contains an inhomogeneous term,   since 

the inhomogeneity is caused by the external field and we are seeking resonant 

response to an external field.    Then equation (3,2.1') takes the form 

<V^Yukawa> 

r2||(k;q)=-l + 

+ i J 2/y (k-^) G 11 [q+q) r2| i (q; q) G| |   (q) 
.4- 

(3.2.39) 

To study the collective mode we have to consider the homogeneous counterpart 

of this equation which we will now examine. This is equivalent to studying the 

pole structure of  X ,     ,    From (3. 1.12) if the usual RPA is used,  with F (I2j 3) 
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in the third term equal to -ö(4,(l-2). ö<4>(1.3)   and neglecting «r/öü,  it can be 

easily verified that   ^ (12; 3) i. of the form   Ö (^ - t^ ^ {12 ; 3 ) M that in 

Fourier «pace,  one may aa.ert that in (3. 2. 39),  1^ q)   I, independent 

of  ko ,  the frequency part of  k.    Then the   ^   integration in (3. 2. 39) can 

be carried out, which is just   C   a« in (3. 2. 17c): 

(2»)     y        [w-wJa+a) + w+(ä)   J  **^ 

(3. 2. 40) 

(homogeneou. part of (3. 2. 39)) where   ü±(q)   are evaluated with the Yukawa 

potential as in Chapter II (2. 5. 10).    It is'interesting to note that in the limit 

w = 0,  q = 0 (in this order of limits),   (3. 2. 40) becomes the ground state 

condition,  namely (2. 2. 15).    Hence,   in the    P   state limit,   the two equation, 

should yield the same results.    We now make an algebraic transformation 

r2i|{kiq) = [u-ujk+a) + ü+{k)]r2n(k;q) (3.2.41) 
Then 

(u - u_ (k f 3) + u+ (k)) r^j (k ; q )    = . 

' J    uf?^^'^ (nFK<ä))-nF{u).(a + 5))) F^^qj q) (3.2.42) 

Vk) = k2Am.J ^^(k.!)^^ ^p-^y^-a'",^ . (3.2.43) 
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Fukuda [12] arrived at an equation of the  form (3. 2. 42) uaing an equation of 

motion   method for the spin flip operator in the RPA which involves the 

exchange term and he worked out the Coulomb case in the   F   state.    The 
»■ 

present approach follows a procedure somewhat similar to that of Fukuda in 

solving (3. 2. 42) for a Yukawa potential,  but for all  f   and   f . 

We will first indicate how (3. 2. 42) can be solved for quite general ?^ 

and then specialise to the Yukawa potential.    Let   y = kAF,  f •■ qAr , 

* = lA^  • « = (k^.  /2m) v and ar    = mc  /k.-.   and also   chuu»«   x   as the 

z axis of a reference coordinate system.    Then,  since   cos 0 = (-^JL )l^ZYlQ(B^), 

^tm^^ being the usual spherical harmonics,  we have 

|v-x2-2xy(^)1/2Y10(9) + (-^)ydVv(|y-7|)[nF(w {x+y))..nF(W+(yl^t(y;xl 

or      /»    ,_ 
= (—^)j   d   yV(|y-7l)[nF{U_(x+7)). nF(W+(7))jr2||(7;x) 

2 

(3. 2.44) 

where we have written for convenience, ^ (y   y) = -^-1—    V(|y-y|)        Let 
kF x - 0 in this.     Multiplying the resulting expression       through by 

{nF(u_(y)) - nF (u+(y)) ) and integrating over   y ,  we see that a solution exists 

with 

0     and   Pii   (y, 0) - a constant (3.2.45) 

Multiplying (3. 2. 44) through by (nF(u_(y+x)) - n^ (u+(y)))and integrating over 

y   we get 
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(v-x2) J -^-V (nF(u {x+y)-nF(U+(y)) ) f^J J (yix) 
\ 

2x (ij-)l/2 J -^- yY10(9) (nF(wJx+y)).nF(W+(y)))T^| (yjx) + 

.3   ,3- 
(.1!^.) JJ   d X^y     V(|y-y|){nr(w(x+y))-.nr{tV(y)))(nF(UL(x+yl-nr(hV(y))) 

•| t(yi x) 

.3   .3- 
= (^)J-j,^^^Y(|y-y|)(nF(u_(x+y))-nF(uV(y)))(nF(ü{x+71|-AF(u+(7))) 

Interchanging   y   and   y   in the RHS,    since   V   is in general symmetric,   this 

term cancels the last term on the LHS and hence one arrives at a general 

expression for   v   for all   x , f ,  and   f : 

v = x   + 2x (-^j-) 1/21-^r yY^^J^F^-^y^-vK^^^zit*^^ (2rr) 

f -^j- [nF(y.(x+y))-nF(u+(y))J F^ | (y; x) 
<2,r) (3.2.46) 

To find the coefficient of   x  ,  we expand (nF{u_(x+y))-nF(tj+(y)) )   and 

F,! i (y; x) in powers of   x   taking note of (3. 2. 45) 

CO      QO ^ 

nF(uJx+y})-nF(U4(y))^n(0)(y)+^   ^   x1 Y|o(y) n/^Cy) 
i=l   i=0 

oo 

j=li,m, 

(3.2.47) 

^ 
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Only   Y^   appears In the first expression as the left-hand side contains 

explicitly only x.y (or ^) while this is not so clear in the second expression. 

Working then only to lowest order, we find 

v~ x2+2x2(ij-) 
1/2   f- 

Jy
3n^y)r2pt)10(y,dy+T2/f>Jy3nO>(y)dy 

4^(0) $>***** dy i 

ti. ?.. 48) 

Now clearly at   T = 0oK, 

nF(u_{x+y)) - nF(W+(y)) = [nF(u (y)) - nF (U+(y))] 

M^)l/2yYln(^ö((l-?)2/3-y2,f... 10 
so that 

and 

.(0) n   <y) = "F^. (y)) - nFtlJ+<y^ 

Choosing 

r'2lt(0>:l(3/4t)l/2(ars/,) 

we finally get «- 

with 

(3.2.49) 

(3.2.50) 

7-) S(|,f)l 

(?. 0 = y (i) dyy   {nF(u)_(y))-nF(u+(y)) )   r2jtl^'(y) 

(3.2.51) 
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Now our task is to find   I^i * 10 (y) .    Thi« is done by using (3. 2. 47) in (3. 2. 44) 

after multiplying it by [np(w_(x+yj-nr(w (y))] ,  along with the expansion 

» * v, x   ♦ ,. . (3. 2. 52) 

and then equating the coefficients of like powers of  x   on both sides of the 

resulting expression.    Before doing this,  let us note that formally 

V(|y-yl) = -^y   Q|..(y;7)(iri-)Pr0i) (3.2.53) 

♦i 
- r 2 where   fi "is the angle between   y   and   y .    Using     i P-U») P|,0i)d#i=£|^j öy, 

we find 
+ 1 

^«Vviy^y   d^ P/ji) V(|y-y|) (3. 2. 53a) 

yy -I 

In (3. 2. 53),   referring   y   and   y to  a system where   x   is the   z   axis, 

PiM (*)= 4, £   ( _^r) Y1,m() (y) Y^.,^ 

m" 

so that (3. 2. 53) takes the form 

V(|y-7!)   =iirX       Q^lyjT) Yrml.(^) Yinm.(y)   . (3.2.54) 
yy jit fm' 

Here   Y^^'s are such that zm 
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Jii Y^ (h Y*m. {f) =  6W ^ (3. 2. 55) 

+1      2f 

where    \ dy = J ^  J    dj  a« is usually taken.    In the Yukawa case, 

(3. 2. 53a) takes a particularly simple form 

yy .Ji     [y +yz+« -2y7M] 

But since   Q.(t) ■   A*ii**rtw. function of the second kind 

■ 4 j* T^-  . 
we find 

■ (4^) • Q^yjy)     = Q|     y    y _ ^    I    ' (3.2.56) 

The expansion (3. 2. 53) was anticipated in view of this.    Using these,  we 

get for the coefficient of   x 

-i/(^)'/2Y10(?)r^'t2(^) ^ Y(,m,(?)r2|
(
t

1)
(,m,(y)y7",0)(y)Qo(y;y)dr 

I'm1 

(3.2. 57) 

Multiplying this through by   Y.     (y)   and integrating over   y ,   we get 
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•2y<^1/2r2|,
(0)ö11 ömo^^)[]f »<0,^«o^ r2lfö^ 

(i) 
= 2 (^)  T y n<0> (7) Q/yiT) ^ itn&tY' <3- 2- 58> 

_    (1) 
Note that for I / 1 , m / 0 ,  this gives homogeneous equations for   I^ ^ which 

can,  therefore,  be taken to be zero without loss of generality.    Also only 

r2itVo {y)   aPPears in the exPre»"lon <3- 2- 51> for   ^W    Thu*» W* con,ldc,p th* 
equation for I = 1 m = 0   only.    Using (3. 2. 50) for T^ j0) ,    we   finally have 

•y2 + I7" 'Ny) Q0(y;y)<iy -^^/^(y, 

= J 7 n101 (7) Q^y;?) ^j^Cy)^ (3. 2. 59) 

This equation must be solved for  ^ | {^   ^ arrive at an explicit expression- 

for the coefficient of   q2   in   usw.    Note that the above framework is so far 

independent of the choice of interaction,  and hence,  is a proof of the existence 

of spin waves for quite general interactions. 

Now we will specialize    V   to be a Yukawa potential,   so that (3. 2. 56) 

has to be used in {3. 2. 59).    Noting in this case that 

and 
-.2 

r 

^ 

J 

(3.2.60) 
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and since the integral on the left-hand side can be explicitly done, we finally 

have 

3X       2 y   +y i[(l+?)l/3-(l-f)1 As. I**ii*p?*j 
-) 

[" - C   "n 

d-n'^y 

tzui.f/K*z 

+ tan 

+ tan 

-s dy dilfii! yy f (^ptw+iy))-^^-^)) 

(3.2.61) ^IW^ 

Now note     that if   r2i/io<-y^ = " r2lVlO(y)'   thi8 ««l1^110" 8ti11 ^olda.    The 

equation (3. 2. 61) is an inhomogeneous Fredholm equation of the second kind 

and hence    admits of a power series solution.    Furthermore,   this has an 

iterative solution,   the first iterate being the inhomogeneous part.    Since 

the coefficient of   TjA-'iy)   in the left-hand side of (3. 2.61) can be shown 

to be positive for positive   y ,   it is clear that the solution   r^ltlO W ha8 all 
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its terms negative.    In view of the symmetry noted earlier, we may seek a 

power series solution in the form 

- (1) 
rz\\ 

> V 
10 W " 1 

2n+l 
'2n+l 

(3.2.62) 

n=0 

The integrations on the right-hand side can all be done in principle and thus a 

linear expression involving the coefficients [a^   is obtained.    Equating the 

like powers of   y   on either side of this identity,  we get a set of simultaneous 

linear inhomogeneous algebraic expressions for {al ,  which can,  therefore, 
— (1) 

be determined in principle.    Once these coefficients are determined, T^ 10 

is obtained and hence,    S (|, ?) .    In view of the cumbersome nature of this 

equation (3. 2. 61),  we have,   in the case of arbitrary magnetization,  chosen 

a single term expansion   in (3. 2. 62).    Even this gives a very complicated 

expression for S (?, ?)•     We here give   S   in the Coulomb and Stoner limits for 

the sake of simplicity: 

u 
SR 
SW (KÖ'AF) 

"n.n5/3-(i-05/3" 
~5? 

(3.2.63a) 

where 

and 

where 

, (y) = -  jf-y - (1) 

^Itio 
for   £ — oo 

USW   "    T^?    \l       \0    'ar. 

Jl) 

(lK.)1/3-(I-?)1/J. 
(3.2.63b) 

r
2lt.0tV> = -T     {{^ß\.^       t°T*-0 
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Note that (3. 2. 63a) is precisely the same as that obtained earlier by a rigorous 

method not involving the steps suggested above.    In the paramagnetic limit,  using 

the equilibrium   KÖ'Aj.   and   ar^,   respectively,  it Is found that the spin waves 

are unstable as must Indeed be the case.    Again for the   F   case,  (J=l), wsw 

In both cases are positive when the corresponding equilibrium coupling strengths 

are used as they should be. 

For the ferromagnetic case, however, we have carried out a three-term 

expansion In (3. 2. 62) and again a very cumbersome «xrre«*lon for S ( *) for 

all C's obtained. For the sake of simplicity we again give the umrmmb and 

the Bloch limits only. In the Stoner case, aj and a5 are Identically zero 

to [0{52)] , as this is the only meaningful term here. In the Coulomb case, 

however,   evaluating (a^aj)   gives   S (f-.O;   ?=!) = 0.3517   and hence 

c(t=l)        2/,      ..        5. 344 f 

This must be compared with Herring's result 

(3.2.64) 

CJ <<l='> = q
2Am (i - 

5.485 
'SW 

) 

I 

Fukuda [12] gives 5. 136   for this and this is wrong since he made an error 

in computing   a5 .     It may be remarked that a two-term expansion gives       ^ 

5. 166   in agreement with Fukuda.    It should now be stated that using Herring's 

spin-wave stability criterion using tha equilibrium value    rs = 5. 45 {Bloch[3]) 

we find that our calculation gives a positive   usw   whereas Herring's gives an 

unstable spin wave (negative   usw).    In view of this,  we feel that our 

calculation ia better than Herring's. 
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In the next section,  the case of Bloch electrons will be dealt with in 

some detail. ^"-^^^ 

- ■ 

3.    The Case of Bloch Electrons 

In Section 4 of Chapter II,  suitable modifications for treating the single 

particle states in a periodic potential were outlined.    In conjunction with   . 

(2. 4. 2),  let us define the vertex parts in the Bloch scheme as follows: 

r.di'k; q) = J    b^+q(i ) b^d«) e1^ 2 r.(ll'; 2) d4l d4l' d42 (3. 3. 1) 
IBZ 

i:     band index.    Then the equations in the RPA including exchange can be 

written 

r.«i'k;q) = - Tj   <   ik4q|i'k> 

ik+qi,q Y"    /»      XK+q l?q 4— 

V2 

1  2 

(3.3.2) 

Here 

«.k.  I,k 

^3 4!   = J J  b*ik1
(ri)bV2(ri>b| 

3k3tr_2)bi4k4(ri)^(rrri>d3rld3r2 

(3.3.3) 

' 



■r-m"<.,   ii ..ii ;I.I;IW i.» JIJIMIIMII ;>II p«. ■ I^IA»»^-^?--- . ■ ->-.    .11 n—i|»^«»tTEsr.,i:_.j!'.;.^:r,T^^, ■.gi!,--;- ■   ; ! •' —':,—•" .»'•■■ '—T- 

I 

ARPA-11 UI-39 

Using the periodic properties of   b-   ,  it is seen that*Z/  *   1 ,2. 2   is non-aero 
'3*3 £4*4 

only if  kj +_k2 = k3 + k^ (mod K)    (K:   reciprocal lattice vector).    Neglecting 

Umklapp processes (see Adler [46] for their effects) and using a Fourier 

representation for^rj-r^ one arrives at 

^1^31^ ' <2»>3 < '1*11^4 > < VllV^J > ^l-^ 

• W ^ 4 k2 - k, - k4) (3,3.4) 

Defining 

H (li'k;q) = <ik+q|l'k >   F^ (il'k; q) (3. 3. 5) 

and using (3. 3.4) these equations can be recast into the form 

r.Mü'k;q)= - Tj -yfq^Cq)   + 

+ ^ ITT-V^-^^'M; V2q) G| ^^ri'^i^i ^Gt ® 
1 2 (3. 3.6) 

where 

< £k+q(i  q+q> <i  q+q(|  q><|  q \vk > 
fe/(i|.kq;i1l2q)=     ^^T^-^ ? *—  k+q|i'k> (3- 3- 7) 

and 

Y>) = iZ  y ^rl<M^I^>l 
'I'Z 

[tr[G     {q+q)r.'   (ii^qjq)     G^q)]    ] (3.3.8) 

' 
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m-40 

B 

where 

r^ll'^q) = Aj (il'k;q) +«/(q) 7^ (q) A0 (il'k; q) 

A^H'kjq)   =   -  Tj- 

(3. 3. 9) 

-11 ^(k-^^/dTkqilj^q) .  Gi (q+q) Ai(l1l2q;q)Gi (q)j 
(2») 1 2 lr2 

(3. 3. 10) 

so that 

t*™--^!  I   ^l<'1q+q|i2q>|2[tr^ii(q+q)Al(l1l2q;^0|2(q)}l 
'l^ 

(3.3. 11) 

with 

eB(q) = 1 - 

mil J 

(3.3.12) 

Finally 
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ttriT3Gl (q+^ A3(ili2^ ^ Gl ^i J   * 
i .   • 

+ iV(q).'r3B(q) 

Y   Ji^    |<llq+q|i2q>I2[tr{T3G|i{q+q)A0(l1l2ä;q)G/?2{q)j   1 

1Z (3.3.13) 

and 

X+*(q) = l^    y-^V |<llq+q|i2q>|2 [tr^G^Cq^A^l^q) G^] 1 + 
. I (2,r) 

^^(^T^iq)^     f   ^|<i1q+q|i2q>|2[tr[/G|i(q+q)A0(l1l2q;q)Gi2(q)}l 

Vz 
(2t)' 

(3.3. 14) 

In the 'plasma' RPA 

CB(q) = 1 + V(q) (AI
B+ Bj3)   = 

.4- 

1^2      (2') (3.3.15) 
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and similarly other expressions for   X33 ,  X+_ ,  etc.    One of the imporUnt 

features of the Bloch case is the appearance of additional sums on the band 

indices and the overlap integrals.    The result for    C    (q)   in the unpolarised 

case is that first derived by Ehrenreich and Cohen [40] using the equation of 

f motion method.    These results here are generalized to include the polarizations. 

The above results are valid only when the local field corrections can be neglected 

since the Umklapp processes have been neglected entirely (Adler [44]).    This 

neglect of local field correcliuns is justified when the bands are broad and far 

apart.    In Appendix B the relation between these equations and those that can 

be derived by the equation of motion method will be given. 

In view of the complexity of the results derived above,  only the 

existence of spin waves will be discussed for the case of a single band,  not 

overlapping with any others.    As in Section 2 of this chapter,   the equation 

describing the spin flip oscillation in the RPA including exchange is written 

in the form (3. 2. 42) for the F state (we have treated only F state here to 

keep the complications to a minimum): 

(U - ek{q)) r2| I (k; q)  =   - I Jl-^. ^(k.q)^(kq. q) ^ ^ ^. q) 

(21) 

3- 
ck (q) = cO'.+q) - e(k) - C   -^. I<k|q>|2l/(k-5) (3.3.16) 

J     (2») 

where   e(k)   is the band energy. 
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In the almost free electron limit,  < k|q > ~ 1, and so It/ ~ 1{ since 

W (k) = 4ir e  /k     the arguments of the previous section,   case (C),  go through 

and hence spin waves exist in this case. 

In the tight binding limit,  where the overlap integrals can be expressed 

in terms of Wannier orbitals,  *(£-J ), 1   is the lattice site,  and if both   k   and 

cj   are near zero, 

'^    =     I uk*(r)uer(j)d
3

l 
unit cell 

Y   ■iUi|i-q.i2)   r        ♦,    t = Z c ~   J       a ^'ii. )a(r-l2)d3r 

i. i, unit cell 

The integral 

j a*^-^) a{r-l2) d3r 

unit cell 

is the overlap between two Wannier states,   Ii p •    In the extreme tight binding 

limit,   ^i i i ^ ^i     ^ i n »   an<* ^    h   an<^   h'    are ~ 0 ,   y   -►    \  ^   *    80 t'iat 

i 
<k|q> = 0(|k-q|).     The arguments of Section 2,   case (C) of this  chapter 

are applicable so that the spin waves are seen to exist in this case also, 

since ^(kqq) ^ O    (|k-q|)   and the equation for   u   is 

(W-  ek(q))r2jj(k;q)  =   -^   ±3T'i/(k.q)OZ(\k-q\)rz^{qi<0 
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.3- 
ejq) = e(k+q) - e(k) -   T-^3-^ (k-^) O2 (|k.q|) . 
* ^   (2») 

There is another approximation to the integral (3. 3. 4) suggested by 

Antonoff [29].    The corresponding results    re here derived using the present 

technique,   since they follow quite easily from the expressions already derived. 

Antonoff makes the "degenerate kernel" approximation which consists in 

taking,   in the single band scheme 

^k^ «  ^l-V +   ^ex<kl-k3>. 
(3.3.17) 

k   k 
What is done here is to write It .l . 2     in terms of Wannier orbitals,   and in the 

K3   4 
resulting expression retain only two-center integrals.     Then (3. 3. 2) takes 

the form (in the one-band case) 

r^q^-Ti-iC   A"      {^{q)+nxO^> 
1 u   (lit) 

[tr ^(q+q) T. (q; q) G (q) ]]   + 

\    d   <!.    (^ (k-q) +  'Z/     (q)) G(q+q) F (q; q) G (q) + i (3. 3. 18) 

In this one further neglects   ^^(k-q) in the second term and   ^.(k-q) in 

the third.    Then a calculation similar to case (B) of the present chapter 

follows: 

:*i 
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in.. 
Ji   (q) 

in. . 

in, . 
7,    (q) 

■{AIII + Bm ^«J^AmB^ 

[1 -(^x(q>- ^c(q)){AIII+ B^ ♦ ^x(q)(^(q)-2^/(ql)AmBIIIJ 

(3. 3.19) 

■ 0 (3.3.20) 

■ 0 (3.3.21) 

" (AIII " Bin ) 

v in. . 
X33  ^ 

x+. <q) 

[ 1 -(f/ex(q)- VJWArf Bm) ♦ ^x(q)( ^x(q)-2 Vc(q))AI1IBIIIl 

(3.3.22) 

•(AiiitBiii ■2 <nx^> - ^c^» AIII BIII > 
[l-(2/ex(q)-^(q))(AIII+BIII)+^ex{q)(^ex(q)-2Vc(q))Am BJJJ J 

(3. 3. 23) 

'III 

(1-VexCIIl) 
(3.3.24) 

III 1     C*   H   — 
U+     (q) =   c («,) - -j-   \   -^- (^ (q-q) + V    (0)) n (q) + 

.3- 
r -rl-^r (^c(q-^ ^ex<0» ff3^ (3.3.25) 

In (3. 3. 25) 1/^ (q-q) is also neglected.    In the unpolarized case one obtains 
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in _    , .    /,. 

<r       -v111    -vni = v
III = o 

(J 

(3. 3.26} 

(3. 3.27) 

f X33m = - 2 Ajjj/d - S/^q) Ajj,) = 2 X^ . (3. 3, 28) 

From these results one may notice the following features,  even though many 

terms are neglected in arriving at these results.    The Coulomb and the exchange 

integrals appear in all the correlation functions except   X .        where only *%$ 

appears.    This is significant,  and the reason why in the "plasma" RPA   X. 

did not show the pole structure directly and why it did in case (B) now appears 

obvious,   even though this fact that exchange has to be taken into account fully 

was stressed earlier.    In case (B),however,  we had taken ^ x = W    = V, 

which when substituted in the above set of expressions give back those found 

already.     The results of case (A) follow if   ^/        is neglected altogether. 

It must be mentioned here that if the "degenerate kernel" approximation 

is made in the Hamiltonian itself after rewriting it in the Bloch representation: 

H   -      ^    e (k) a^ ak<r   ♦ 

k<r 

+     1     Y    7   Y        V^2   a+       aJ       a.    „     a. (3.3.29)       ' ^   LLL ^3^     kjaj     k2a2     k3a2     k^ 
klk2k3Vl'2 

(k1+k2=k3 + k4) 

TT 
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on« m*y then combine the terms in euch a way a* to get an explicit Heisenberg- 

type interaction.    Actually,   ^(q)   goes here with terms which can be cast 

into the form   »(q).    £(.q) which is just the Heisenberg result.    Now if RPA 

is used for constructing the various correlation functions, the results obtained 

1 here are recovered.    This has been verified by the author.   Antonoff [29] in his 

thesis neglected ^(q)   entirely and obtained spin waves.    As remarked above, 

this is equivalent to assuming a Heisenberg Interaction between spins.    In later 

work with F.  Englert [29] Antonoff has included 1/ (q)   and obtained the results 

given above.    They used an equation of motion method. 

In summary,  the possibility of spin-wave excitations in an itinerant 

model is here shown un^er various model Interactions within the context of 

RPA.    Moreover,  the case of an electron gas interacting with a Yukawa 

potential is studied explicitly and the coefficient of   q2   in the ferromagnetic 

state is determined.    The results are in good agreement with those obtained 

by Herring [22, 23] in the appropriate limits.    The collective excitations for 

the Overhauser situation are not examined here. 
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There are many objections to the use of Yukawa potential (even though 

potentials of this type with Thomas-Fermi screening are suggestive) in such 

calculations as are undertaken in the present work.    The first major objection 

is that it is an arbitrary choice and in reality the situation may be more complex. 

Secondly,  even if the choice be arbitrary,  no method is here outlined to 

determine the.screening parameter from first principles.    Thirdly, the 

screening of the interaction in this way is known to reduce the contribution of 

the exchange energy to the cohesive energy enomnmmly If the «rreenlng r»dil 

are chosen to give agreement with the observed specific heat (f kj.~ 10  cm     ). 

(See Pine« [38].)    In spite of these objections the effect of screening on the 

various properties of the electron gas is most easily investigated analytically, 

by using a Yukawa potential. 

There are several possible directions of extension of the present work. 

Concrete results are derived only for   T = 0  K.    These must be generalized 

to finite temperatures.    This extension should settle the query whethe    the 

low temperature magnetization is the Bloch   T   '      or the Stoner   T It is 

almost clear from the present work,   that at very low temperatures one must 

have    T   '      behavior.    This view has been put forward by Brooks [6b] and 

very recently by Mattis [47] also.    There have been some diagrammatic 

analyses of this problem whic'' are not quite rigorous or conclusive.     The 

equations describing the magnetization are quite nonlinear.    Some self- 

consistent way of calculating the magnetization at low temperatures must be 

E-l 
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developed as wa« stressed at the end of the last chapter.    The notion often 

expressed and notably by Edwards [25] that the Stoner and Bloch terms 

for magnetisation and specific heat will both be present is almost certainly 

wrong,  as the existence of   q^   for spin waves clearly indicates.   Even at 

T = 0 K ,  the problem has to be done more completely by including all the 

possible processes in computing the ground-state energy of the system as 

a function of magnetization.    The present work indicates very clearly that a 

mere comparison of   F   and   P   state energies is certainly not sufficient to 

determine the nature of the ground state,  as was done by Cooper [13] and 

Shlmuzu [11].    This is hard only in the sense of numerical analysis bat the 

way it can be handled is outlined in this work,  for the expression for the 

dielectric constant is here derived from which the ground-state energy can be 

computed as was done by Cooper.    The third extension,   which is not 

considered here at all,   is the collective excitations of the system when 

Overhauser type ground states exist.    These must show some new characteristics. 

Professor P.   C.   Martin considers SDW as an itinerant version of the usual 

antiferromagnetism.     If so,   one may expect antiferromagnetic spin-wave 

type oscillafions in the SDW case.    We have now succeeded in solving this 

problem in an   approximate   way,    and the results on this and other matters 

concerning itinerant antiferromagnetism will be dealt with in a separate 

technical   report.    The fourth extension is a more thorough investigation of 
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the results given here for Bloch electrons.    The fifth problem is the examination 

of the Overhauser problem once again in the Bloch scheme.    The investigation 

of SDW for Bloch waves must be of interest in real solids as extrapolation from 

the free gas results to the real cases is often misleading.    The outstanding 

problem of all,  of course,  is a complete investigation,  even within HF,  of all 

the possible ground states including those of broken symmetry.    The phase 

diagrams given in Figs.  2a, b do not include the superconducting and the SDW 

ground states and if these could be somehow incorporated in this plot one would 

have a more complete account of the electron gas,  even at T = 0  K. 
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APPENDIX A 

^     SPECTRAL REPRESENTATION OF THE CORRELATION FUNCTIONS 

By virtue of the definition,   commutation rule«,  the Hermiticity condition, 

and the trace structure of the correlation function« defined by (3. i. 2), « «et ol 

formal relation« i« obtained for their «pectral weight function«.    These are 

given here without derivation (c. f.  Chapter II,  «ection 1). 

App <rl r2; ^ » A33<rl r2» w)   *nd  A+.trir2»    ")   co"««Pond to   y   , 

X«« » and   X , 

App(rir2iw) = App<r2r^ -»> 

y 2? App(rlr2Ju, = 0 

r App(rir2;u) 

<pu)p(i)>lt =t+ =f ^    PP
6L> -  

and 

(z   is a complex variable) 

rr       App(rir2iW) 

u - s 
(A-l) 

A-l 
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A33(^^2'ü, =A33<r2Pli-«» 

f du 
J 2i-A33(^lr2'w,   '   0 

" 

and 

A33(r
i
r2' ^ = * e -0 fX 33(rJl r2'w+i c > " X 33<rl '^ *-**)} 

u    - s 
J 2ir 

A* 
+ -     iri' W> = A-+ (r2rl' 'u) 

J ■^-A+.(ri
r2»w) = <'3<ri)>   ö(3)('i-«-2) 

(equal time commutation rule.) 

('+('),   a  (2)]_ =^(1) ö(3>(r1-r2) 

A+   {riri;tj) = l^ofX + .<r_L
rj;"+^) - X + J^r^u   .i€)J 

<%U)^(l)>|t _t+   =   f^L     AV(ri^^ 
(e^-1) 

and 

xt.,.2;^y^^i^£ 

(A-2) 

u - z (A-3) 
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N . 

THS RELATION BETWEEN THE EQUATION OE MOTION METHOD AND THE 

GREEN'S FUNCTION METHOD "~^«" 

Her. U,. „„.tl..,. de.criM,,, „,, ™rio<1. „„„„„ „cItaHojl. ^^ 

in Chap.., m> ..„. „. rtdarlYad hy ^^ ^ ^^ ^^^ ^^^ ^ 

tt. p.!.,,^ m,dlllm f<>r Blocll elMion,     tocd..^,,,,,,. ^.^ „^.(„j 

m.Ä<Mi to Bloch .l,ctron. ..„ al.o Include. «.. fr« .l.c.ron r..^. „ . 

•pecUl «...    Th. H«.monU» I. wrftU. in tt. Bloch «pr...«..««: 

^y T y y y?yk'''^ t    + 
(lSl+lS2=lS3+lS4(mo<iK)) 

a      and   a   are the creation,  annihilation operators for Bloch electron, 

satisfying the usual anticommutation rules.    Then the equations of motion 

in the RPA for various operators are constructed,  after using 

(B-l) 

H 
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J 

^'iVz 
^ V342 =    (2')3 ^ (kl +k2 ^3 ^4^1 -k4> 

<k1i1|k4i4><k2i2|k3i3>. 

(Umklapp processes are neglected as in the text) 

(w - u/Ck+q) + üj} (k)] r' '   (klT; q)   = 

» (nr((Ji
+(k+q)) - nF(u)Jl (k))] < k+qllki» > J- Uo(q) - Ujfq) 

"^(q) Z Z   Z  <<^,|2''»,+<»ll>^rr<<l,'ll2i<», + 

"^ is as defined in (3. 3. 7) 

[w - U)/  (k+q) + W|; (k)] T* * (kfl'; q)    = 
r 

= (nF(ui'(k+q))-nF(u|," (k))]   < kfqllkl1 > J-  Uo(q) +  U1 

(B.2) 

(B-3) 

(q)  - 

q'     i^   * 

Y   Y    ^(k-q'^kii'q^'V, )      11 T 11 }h   «^z>      r,,",v^j (B-4) 
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(w-w. (k+q)+uj (k))rM{klf; q)   . tl 

(q) + [nr t«/ (k+qj - nF (u* (k))] <k + qi|kr > | - Uj 

Y    U        1/ (k-q-rii/dcii'q; q.^i    ) 
^   ^ <q'+qi1|q.i2>  T"  (q-^^ j qjl (B.5) 

with 

^ W = e/k) - 4 J   l^flki >|2^(k.q') (^.(q.) ♦ .     (,.„        (B.6) 

* 

To see the connection with the vertex part equations,  namely (3. 3. 6), 

one first notice, that the right .id« of (3. 3. 6) la independent of the frequency 

part of   k ,  the first Index of the vertex functlon,so that one may assert that 

the solution of this equation is of the form 

r
l
,(ki«,;q)=ri'(kir,.q). 

Then the   Ü   integrations can be carried out in the right-hand side and assuming 

the   G's    to be diagonal,  one gets,   writing it in the component form: 

J 
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<r«r 

I <q,+qi1 U'^ >|2 (Tj« (q'ij^; aw))rr ♦ 

+ 7      y   ^k-q')^/(kirq;q«l #) 
^^ •—^ I     *• 

lr2 

«-«/(q+q1) + w/  (q') 

Now let 

nF{W|   {q+q,))-nF(W|''(q')) 

(r.Mkii';^))^. 
Ü- «/(k+q) + u/ (k) Tj" (kir; q) 

^p^ {k+q))-nF(wi,(r  (k)) <k+qi|U'> (B"8) 

then 

) 

(U) -^'(k+q) + u^'  (k)) r.^   (klf; q)    = 

= ["^/(k+q))-^^'(kj>]<k + qllkl' >J-  (T.)^   - 

" öacr'?/(^ Z   ^   ^(<q,'2lq
,^1>) r'V^^; q) + 

q'    l^   «r 

YV ^(k-qM^ikii'q; q'l  #   ) "1 
+ Z   Z <q'.qi1|q^>  ^   ^'l^^)? 

q'   1^2 1 2 J 
{B-9) 

«    4 

1 
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which are identical in structure with those derived above (B - 3, 4, 5) except 

for the external field terms which have been swallowed in the Green's function 

technique as the vertex part involves a variational derivative with respect to 

these aid, hence,  their presence here appears as   (T4)rri.    (The notation used 

here is very slightly different from the text and should cause no great 

confusion.) 

—1 

I 
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OVERHAUSER SOLUTIONS INVOLVING BLOCH ELECTRONS 

•' 

In the Epilogue, the fifth problem mentioned concerns the extension 

of the results of Overhauser [18j obtained in Section II-3 to Bloch electrons. 

This is particularly of use since the Chromium-Rhenium   system seems to show 

anSDW character demanding a two-band model.    This was brought to the 

attention of one of us (A. K.   Rajagopal) by Dr.   Van Zandt of Lincoln Laboratories. 

In this appendix we give a generalization of our results of the Stoner thanry fnr 

Bloch electrons given in Section II-4 so as to give an Overhauser-type theory 

for Bloch electrons.    The results of Section II-4follow when Q = 0 and those of 

Section II-3 follow when the Bloch functions are replaced by plane waves, and 

the band indices omitted.    The results obtained here are all formal. 

In order to arrive at a suitable generalization,  we assume that th« 

electron of spin up and wave vector   k   in band   f   is associated only with the 

one of spin down in the same band  but with a vector (k + Q) .    With this 

prescription,   the following redefinitions of the expression (2. 3. 1) are made: 

Uff) 
Gtf(11,) = I    I   7^   W'k-    (^b^.d-)      Gft(i.k.;tl.tll)X 

G||(ll') 

i' IBZ 

i'    IBZ 

dV 
(2jr) 

rb^.^Db^.^D^^i'k'jtj-tj,) 

Gn{n,)= ^   ^ f^Vk^KW^tl^V'l.) 
J«    IBZ^" 

Git(H,)= 1 i* ^~rbi'k'+Q<1>bi.k^1,>Gn(i,fc,iti-ti.) 

> (C-l) 

1'    IBZ 
C-l 
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Then a calculation similar to the one given in Section II-3 follows and we give   ' 

here only the final results. 

♦   *K>. vm.v***lj.tZol{**t'>JJ' «y 
V IBZ 

f    IBZ 
> (C-2) 

g ti(fk)=lZ     J   ^ik+QI'k-   Gti   »lk»u>e 

I'   IBZ 

«It ^=il ^r^Q ^r^'^) 

(2») 

iu'o+    dK'duf 

V    IBZ 
Ut) 

Here c (k) is the energy of the electron in band I , and the IBZ indicates 

that the integration in k space is confined to the first Brillouin zone. As 

in Section II-4, 

3. .3. 

"'AU -1 i" bWl)\^)V0-z)\sU)\*<Mi,,A* 
Moreover, 

Uttw, /i^^j.yj^^i) tgtlWglt (ik) 

(C-3)_ 
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Thus,  in Section 11^3 we may replace   d     by  Ö  .    so that one has finally 

G (Ik;**   * 

f co«2flikg+(lk; M)+«in2öikg_(ikj «a)] c-^A^TO coe^elnÖ^^j^^lk; wH;_(ik;w)] 

whore 

g+(lk;ü)= l/tu-w^Ck)] . 

(C-4) 

(C-S) 

Finally then 

r   dJk. «ifW-^W-T   J      ~7r^&i'k'  ["•2ÖJ,k.nr(w/(^))+.in2Ö|lk(nr(üi;(k'))) 
/'   IBZ (2») 

f|| (k)=^(kfQ) .y j* ~^^s::gi
i;!;;:g[-in2öi.kInF(uj.{k.))+co.2öilkl n^oc»] 

FIBZ u'' 

gti( 
V   f     d3W' iki'k'+Q      /«fl^^') 

))] 
i* IBZ 

git(lk)=4J    •^T^^i'k'+Q/gJpFT 
i' IBZ 

^rpy-coBÖ^^ainö^^r^ü^k'^-n^ü^k'))] 

(C-6) 
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The equation* for   g*i,  gi i    may be written more expllciUyroij.vjr! ni  ^wrfT 

gtl (A) •II d3k. ^fki'k'+o m*** 
3    •'JQc+QI,k• +„...        -y^.vi     JF 

[n^Cu^k-M-n^Ck'))] 

.   •    ■ ■ 

\iS.s.: «J-,^^:*.).:^-        (C-7) 

Lastly,the expression for total energy of this system in HF may be 

<H 
.} 1 V • • • 

,•-'/ 

i» IBZ <2») 

and a similar equation for   gi « (Ik) 

La8tlytthe expression for t« 

computed using these Green's functions as before.    This Is seen to be « ^' 

^-=7    J    -^3  [(ei(q)cos%|q+c|(q+Q)sin2Ö|q)nr(ü/(q)) 
no        t  IBZ ^ 

+ (c|(q)»in2diq+ei(q+Q)cos2Ölq) nF(ui-(q))J 

+ 8in  ö|knF(ü^(q))){co82Ö/lklnF(uif(q
l))+8in  ö|,k,nF(ui;(q'))) 

+ cos2Ö|lkl nj.^ (q1))) 

'  .'i ■ 

rq.iq+Q /eti;;q;git;;;q;; cos« 9inö| C039/f ^^^. > 
+ ^rq,rQiq x/gji(iq)g|j«'q') 'q       'q        ''q'        ''q' 

[nF(u|
+(q))-^F(lJ;(q))^[nF(ui^q'))-nF(u)i^(q,))] 

^i'q' + Q/q       /gtt(<q)gtl(i,q,)       CO30     sinö     co8Ö      |8inö#,   , 
i,q,^+Qs/gU(iq)glt(i'q') ^ ^ ^ ^ 

[nF(iJ|
+(q))-nF(u)4"(q))]  [nF(^(q'))-nF(u);,(q,))l > (C-S) 
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Thi« generalises (2. 5. 26) for Bloch electron».    We may remark that juat aa 

for   Q = 0,  the equations for   gj| and g|| are now coaled Integral equation». 

In the above calculation, the Umklapp processes were neglected which implies 

the neglect of local field corrections and thus broad bands [44].    This formally 

completes the analysis of SDW for Bloch electrons. 
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« 

P-STATE INSTABILITY 

^ The solution obtained infection III-2 was not quite eultable for discussing 

the   P state stability when the Coulomb case for   t = 0   *• considered.    Here we 

C derive the correct criterion for   P   state Instability.    Consider the spin wave 

equation (3. 2. 42) In the limit » = 0 ,  J = 0 (P state).    Ihen 

1    m 

(2v) 

Now let 

-^) r(p;q) + K i^y-yy<p-k>InF(utk+<i))-nr(w(k))1[r(piq) 

=    f   IX- ^ (p-k)[nF(w(k+q))-n   Mk))]   Hkjq) (D-l) 

r(p;q). ^     q1 Y^^F^lp) 
I 

i, l,m 

2..2, -2.    2 p   +k   + ?    k-, A        ^   A% 

hn 

« 

nF (u, (k + q))- nF (u (k)) =   ^      ^ * Y^m tk> "iJi <kJ 
. ftm 

in (D-l) and integrate over   p .     Then we get 

D-l 
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U2Um X ' -' 

(P) 

= *p   Z   J 
kdkQolLl^Vl,lt,2^.Hrte',«,D-J, 

l2llm 

Equating the coefficients of the like power« of   q   we get «Ince 

-r ° (D.4) 

i^-.'^CXp)^^ Ikdk0'(^ 
^k^t^/lnJ;1)(k)ujp) ■•»„L 

Jfrn * 
■^K' 

(D-5) 

It is easy to prove that 

k   2 

n, (1)(k) = - (V/2 \\"M\^-£r-"W6ii 6 

Then (D-5) takes the form 

mo 
(D  6) 

2. .1. .2..   2 
101 e2      If ^   I"  tk ^   kF      l._    ,..i.,KF        „.„l-C 

1 ffp   J 
kdk Q 

rpW + ^k/   \ k (0). 

4ril 

T^T l\"^lö^-ü(k))rio  ^ 
(D-7) 
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Let us take   u ~ k  /2m   so that one finally gets a condition for nontrivial    solution 

of (D-7) as 

i ■ ■— iö(,ii*f,/ii-ola*fiAH 

Now, 

QoU) -QjUM-J- (l-x)ln ( -}—"I   +1 

(D-8) 

or 

ar 
1   ■ ^_      [1  .   ^1 ind +   ^   ) J. 

or 
or 
_£_    [i  .%-tn   0 +^r)l (D-9) 

Note that this is precisely (2. 5. 16) when evaluated for   t = 0.    For   C -•> 0 ,   this 

gives   the Bloch condition   ar    = 9  .      For   f -» ••,   in (1 + —y- ) — —y  — s ?2 ^ e 

and 
ar ar 

but    ar  /*£      = -3-  ( ),8o that we get the Stoner criterion   Kfl'/^p = "T~ 
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